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ABSTRACT 
Reprogramming of DNA methylation plays a vital role in the establishment of cell identity during 

early mammalian development. To gain deeper mechanistic insights into this process requires 

capturing the entire dynamics of DNA methylation – both 5-methylcytosine (5mC) and its 

downstream oxidation product 5-hydroxymethylcytosine (5hmC) – in individual cells. Therefore, 

in this work, we report a new single-cell genome-wide strand-specific sequencing method, 

scMHT-seq, to jointly profile 5mC, 5hmC, and the transcriptome from individual cells. Using 

human embryonic stem cells (hESCs), we first show that scMHT-seq can accurately detect both 

5mC and 5hmC from the same cell with minimal crosstalk in quantifying these two DNA 

modifications, and that the multi-modal measurements are in close agreement with individual 
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measurements of 5mC and 5hmC in single cells. After establishing the method, we next applied 

scMHT-seq to gain insights into human primordial germ cell (hPGC) development. After 

specification, hPGCs undergo rapid global demethylation as they mature, and this reprogramming 

is critical for normal development of gametes. However, it has not been possible to fully overcome 

this key epigenetic barrier in culture, thereby limiting our ability to generate mature hPGC-like 

cells (hPGCLCs) and accomplish in vitro gametogenesis. To gain deeper understanding of the 

molecular factors involved in germ cell maturation, we applied scMHT-seq to an extended in vitro 

culture system for generating hPGCLCs and observed partial and heterogeneous erasure of the 

methylome across single cells that is mechanistically predominantly driven by passive 

demethylation due to reduced DNMT1-mediated maintenance methylation activity. Notably, we 

discover that hPGCLCs in extended culture can be transcriptionally classified into two distinct 

states, with one population enriched with more mature hPGCLCs exhibiting genome-wide loss of 

DNA methylation. Moreover, analysis of these two cell states identifies DND1 and SOX15 as two 

factors that are potentially key drivers of hPGCLC demethylation and maturation. Overall, we 

demonstrate that scMHT-seq is a robust and high-throughput technology that can provide insights 

into the mechanisms driving DNA methylation dynamics and their effect on cell states.  
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INTRODUCTION 
DNA methylation (5-methylcytosine or 5mC) is a well-established regulator of gene 

expression that plays a key role in impacting cellular identity1. In this context, during early 

development in mammals, DNA methylation erasure is central in generating pluripotent epiblast 

cells prior to implantation, and again in the development of the germline to reset the epigenome 

of the gametes1,2. For example, during the maturation of human primordial germ cells (hPGCs), 

genome-wide DNA methylation levels drop from over 80% to 5%3, with this demethylation having 

key roles in X chromosome reactivation in females, and in removing 5mC from imprinted and 

meiotic genes to erase its prior cell identity and to facilitate differentiation into mature gametes2. 

While the global loss of DNA methylation is a key epigenetic barrier necessary for hPGC 

maturation, the mechanisms driving 5mC removal during hPGC development are not well 

understood, unlike in mouse PGCs, where both passive demethylation – arising from a lack of 

DNMT1-mediated maintenance methylation – and active demethylation – arising from the 

conversion of 5mC to 5hmC due to the activity of TET proteins – have been observed (Fig. 1a)4–

7. Gaining deeper insights into the erasure of DNA methylation is central to mimicking the 

maturation of hPGC-like cells (hPGCLC) in a dish. Recently, several in vitro models of human 

germ cell development have been established, in which human embryonic stem cells or induced 

pluripotent stem cells are differentiated into hPGCLCs that express key early hPGC markers such 

as SOX17, PRDM1, and TFAP2C; however, these hPGCLCs exhibit limited global DNA 

demethylation, a key bottleneck in accomplishing in vitro gametogenesis2,8–10. Therefore, in this 

work, we employ a long-term hPGCLC culture system we developed previously to investigate the 

role of DNA methylation in germ cell development in vitro and to identify molecular factors involved 

in the erasure of the methylome and maturation of hPGCLCs11. More generally, given the 

importance of DNA methylation in controlling cellular memory and phenotypes, it is critical to map 

the dynamics of this modification as well as infer the mechanisms driving reprogramming of the 

methylome to gain deeper insights into cell state transitions. To fully characterize the turnover 

associated with the gain and loss of DNA methylation and to directly understand its relationship 

to cell states, it is critical to jointly quantify DNA methylation, as well as its downstream oxidation 

product DNA hydroxymethylation, at a single-nucleotide and strand-specific resolution, together 

with mRNA from single cells. However, accomplishing all these three measurements from single 

cells has not been reported previously; therefore, in this work we have developed a new method 

scMHT-seq to simultaneously profile DNA methylation, DNA hydroxymethylation and the 

transcriptome from individual cells.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.01.646736doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.01.646736
http://creativecommons.org/licenses/by-nc-nd/4.0/


Over the last few years, several groups, including ours, have developed methods to profile 

DNA methylation or DNA hydroxymethylation in single cells12–16. However, to completely elucidate 

the methylome dynamics, it is important to quantify both DNA methylation and DNA 

hydroxymethylation from single cells. Therefore, more recently, methods to jointly profile 5mC 

and 5hmC have been developed. For example, one approach employs a DNA hairpin to capture 

and denature endogenous DNA, followed by the synthesis of a copy strand that then leverages 

differential chemical reactivity between the methylated or hydroxymethylated endogenous DNA 

and the unmodified copy strand, thereby encoding the methylation status in an aligned pair of 

bases that can be resolved as one of six DNA states, including the 4 nucleic acid bases, 5mC 

and 5hmC17. Similarly, we developed a method that uses a combination of restriction enzymes 

and nucleobase conversion reactions to profile 5mC and 5hmC from the same sample at the 

resolution of individual CpG dinucleotides18. However, these methods are limited to profiling bulk 

samples and therefore cannot capture heterogeneity in DNA methylation dynamics between 

individual cells. To overcome this limitation, single-cell methods to jointly quantify 5mC and 5hmC 

have been developed. For example, Joint-snhmC-seq enables these combinatorial 

measurements by splitting genomic DNA molecules into separate reaction wells for 5mC and 

5hmC sequencing; however, this limits our ability to measure both 5mC or 5hmC from the same 

genomic loci19. Another method, SIMPLE-seq, employs reactions to convert and detect 5mC and 

5hmC in the genome; however, the efficiencies of these conversion reactions are less than 90%, 

resulting in a fraction of 5mC and 5hmC sites being incorrectly detected as unmethylated 

cytosines and reducing the accuracy of estimating 5mC/5hmC levels in the genome20. Similarly, 

DARESOME is another recent single-cell method that detects 5mC and 5hmC in addition to 

unmodified cytosines, using a series of restriction enzyme reactions to ligate different barcoded 

adapters to unmodified cytosine, 5mC, and 5hmC; however, a limitation of the method is that all 

three adapters have similar 3’ overhangs, potentially leading to incorrectly ligated adapters and 

increased false positive detection21. Furthermore, these methods are also unable to integrate 

these epigenetic measurements with quantification of the transcriptome from the same cell, 

thereby limiting our understanding of how turnover of the methylome directly impacts gene 

expression and cell state transitions. Therefore, in this study, we developed scMHT-seq, which 

employs two orthogonal restriction enzymes to profile 5mC and 5hmC with high specificity and 

combines it with molecular barcoding to also capture the transcriptome of the same cell in a one-

pot assay to directly link DNA methylation dynamics to cell identity. We apply scMHT-seq to 

interrogate germ cell development at different time points to identify the modes of demethylation 

responsible for the erasure of the methylome in vitro and the relationship between the global 
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methylation status and cell state. Finally, we demonstrate that integrated methylome and 

transcriptome sequencing in scMHT-seq enables us to identify potential factors involved in the 

genome-wide erasure of DNA methylation and maturation of germ cells, and suggests strategies 

to accomplish in vitro gametogenesis in the future. 

 

RESULTS 
scMHT-seq can jointly profile 5mC, 5hmC, and the transcriptome in single cells 
To jointly profile both 5mC and 5hmC in single cells, we used two restriction enzymes that 

specifically recognize these two cytosine modifications22–24. We have previously developed single-

cell methods using these restriction enzymes to strand-specifically quantify either 5hmC or 5mC 

in single cells8,13,15,18,25. To simultaneously profile 5mC, 5hmC, and mRNA from the same cells in 

scMHT-seq, we developed the following strategy: single cells are sorted into 384-well plates and 

the mRNA is reverse transcribed using polyT primers containing a cell-/RNA-specific barcode, 

unique molecule identifier (UMI), 5’ Illumina adapter and T7 promoter, followed by second strand 

synthesis to generate cDNA. Next, to identify 5hmC sites, genomic DNA is first treated with b-

glucosyltransferase to glucosylate 5hmC marks, and subsequently, the restriction enzyme AbaSI 

is added which recognizes glucosylated 5hmC and generates double-stranded breaks with a 2 

nucleotide 3’ overhang 11-13 nucleotides downstream of 5hmC13,24,25. Following this step, 

genomic DNA is treated with protease and the restriction enzyme MspJI is added, which 

recognizes 5mC sites in the genome and generates double-stranded breaks with a 4 nucleotide 

5’ overhang 16 nucleotides downstream from 5mC15,18,23. Due to the orthogonal cutting modality 

of the two enzymes – with AbaSI generating 3’ overhangs and MspJI generating 5’ overhangs – 

two distinct sets of barcoded adapters are specifically ligated to AbaSI- and MspJI-generated cut 

sites. These two adapter sets contain a T7 promoter, 5’ Illumina adapter, and a 5mC- or 5hmC-

specific cell barcode. As the cDNA and ligated gDNA molecules are tagged by cell- and molecule-

of-origin-specific barcodes, they are pooled and amplified by in vitro transcription (IVT), followed 

by Illumina library preparation, as described previously, to enable joint profiling of 5mC, 5hmC 

and mRNA from single cells (Fig. 1b)8,13,15,18,25–27. Finally, as the two restriction enzymes AbaSI 

and MspJI generate sticky-end cut sites, and as IVT results in the directional amplification of 

molecules, the sequencing data can be used to computationally infer the strand-specificity of the 

two epigenetic modifications, as described previously13,15,18.  

To benchmark the method, we first applied scMHT-seq to human embryonic stem cells 

(hESCs) and found that the efficiency of detecting unique 5mC and 5hmC sites in scMHT-seq 

was similar to those detected individually in scMspJI-seq and scAba-seq, and the number of 
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unique mRNA transcripts detected by scMHT-seq was similar to other single-cell methods (Fig. 

1c-d and Supplementary Fig. 1-3)13,15,26. As the detection of 5mC and 5hmC relies on restriction 

enzymes, we next wanted to ensure that we have high specificity and accuracy in detecting these 

two epigenetic modifications in scMHT-seq. Therefore, we evaluated the extent to which reads 

could potentially be assigned incorrectly to the other mark. In scAba-seq, we found that 3.23% of 

reads had a cytosine 16 nucleotides downstream from the cut site and could potentially be derived 

from MspJI cutting a methylated cytosine at that position (Supplementary Fig. 4a). However, as 

MspJI is absent in the scAba-seq workflow, this level of reads correspond to background noise 

arising from the random occurrence of cytosines at a specific position in the genome. Consistent 

with these observations, we found that 3.19% of reads in the 5hmC datasets in scMHT-seq could 

potentially arise from a 5hmC-specific adapter capturing an MspJI cut site; however, this is similar 

to the background noise established in the scAba-seq control dataset, suggesting minimal 5hmC 

miscalls (Supplementary Fig. 4a). Similarly, 5.19% and 4.02% of reads in 5mC datasets in 

scMspJI-seq and scMHT-seq, respectively, could potentially arise from 5hmC sites 

(Supplementary Fig. 4b). Overall, these results show that the false positive rates in scMHT-seq 

are low and similar to control datasets in scAba-seq and scMspJI-seq, demonstrating that there 

is minimal crosstalk between 5mC and 5hmC measurements in scMHT-seq. We next 

benchmarked the genome-wide distribution of 5mC and 5hmC obtained from scMHT-seq. For 

example, we observed the expected hypomethylation around CpG islands, consistent with 5mC 

measurements from scMspJI-seq and 5hmC measurements from scAba-seq (Supplementary Fig. 

5a-b)1. Further, compared to scAba-seq and scMspJI-seq, we observed that scMHT-seq 

displayed a similar distribution of 5mC and 5hmC at gene promoters and gene bodies 

(Supplementary Fig. 5c-d). More generally, we observed that while scMHT-seq slightly 

undersamples 5mC and 5hmC sites within high density CpG regions of the genome, possibly due 

to over-digestion by the two restriction enzymes at these dense CpG regions, overall, we find that 

the distribution of CpG sites covered by scMHT-seq is similar to that found in the genome and 

that detected by scMspJI-seq and scAba-seq (Supplementary Fig. 6).  

We next explored the relative distribution of 5mC and 5hmC in individual cells. Compared 

to 5mC, 5hmC is known to occur at much lower frequencies in most cell types, and we found that, 

on average, 5hmC levels in single cells are 3.1% of 5mC in the CpG context, consistent with 

previous estimates in hESCs (Fig. 2a)28. Further, we investigated the distribution of these 

epigenetic marks on individual DNA strands in single cells. As scMHT-seq is a strand-specific 

method, we assessed the strand asymmetry in the distribution of 5hmC and 5mCpG in single 

cells using a metric that we have previously used, called strand bias, defined over a genomic 
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region as the number of epigenetic marks on the plus strand divided by the total detected on both 

strands. Thus, a strand bias of 0.5 indicates that both DNA strands have equal levels of the 

epigenetic mark whereas deviations from 0.5 indicate differences in the levels of the epigenetic 

mark between the older inherited DNA strand and the most recently synthesized new DNA strand. 

We found that the 5hmC strand bias was broadly distributed between 0.1 and 0.9 while the 

5mCpG strand bias showed a tight distribution centered around 0.5 (Fig. 2b). This distribution is 

similar to our previous observations of 5hmC and 5mC strand bias in mouse embryonic stem cells 

(Supplementary Fig. 7). Furthermore, these results are consistent with the known mechanism of 

DNMT1-mediated inheritance of 5mCpG from old to new DNA strands, and the lack of inheritance 

of 5hmC and slow kinetics of TET activity that results in new DNA strands having lower levels of 

5hmC compared to old DNA strands. Finally, the strand bias distributions of 5hmC and 5mCpG 

obtained from scMHT-seq are in close agreement to those obtained individually from either 

scAba-seq or scMspJI-seq, further validating that scMHT-seq can distinguish between 5hmC and 

5mC with high accuracy and specificity (Fig. 2c and Supplementary Fig. 8).  

After establishing and benchmarking scMHT-seq, we next wanted to use the method to 

quantify the dynamics of methylation and hydroxymethylation in single cells. Specifically, we 

hypothesized that strand-specific quantification of non-CpG methylation could potentially be used 

infer the dynamics of de novo methylation, analogous to our previous work where we showed that 

strand-specific measurements of 5hmC could be used to gain insights into TET dynamics13,25, 

particularly as the DNA methylation maintenance machinery is known to have a strong preference 

for hemi-methylated CpG dinucleotides only29. Therefore, similar to 5hmC, newly synthesized 

DNA strands initially lack non-CpG methylation, and if the net rates of accumulation of non-CpG 

methylation are slow relative to the cell cycle, the old inherited DNA strand for any chromosome 

will contain higher levels of non-CpG methylation relative to the new DNA strand. In support of 

this mechanism, and consistent with our previous observations for 5hmC, we discovered high 

levels of strand-specific asymmetry in the levels of non-CpG methylation, resulting in broad strand 

bias distributions for non-CpG methylation (Fig. 2b). In agreement with these observations, we 

also found that the variance in strand bias between chromosomes of individual cells was higher 

for 5hmC and non-CpG methylation compared to 5mCpG (Fig. 2d). Furthermore, across individual 

chromosomes, we interestingly observed that 5hmC strand bias and non-CpG methylation strand 

bias were highly correlated (Pearson’s correlation, r = 0.91, 0.78, and 0.42 for 5mCpA, 5mCpT, 

and 5mCpC, respectively) (Fig. 2e and Supplementary Fig. 9). This coupling of 5hmC and non-

CpG methylation strand bias arises because these epigenetic marks are inherited together on the 

old chromosome strand, thereby resulting in highly correlated transmission of 5hmC and non-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.01.646736doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.01.646736
http://creativecommons.org/licenses/by-nc-nd/4.0/


CpG methylation. In contrast, the 5hmC strand bias was found to be uncorrelated with 5mCpG 

strand bias (Pearson’s correlation, r = 0.05), consistent with the known role of DNMT1 in copying 

5mCpG from old to new DNA strands, thereby making the genome-wide distribution of 5mCpG 

largely independent of the age of the DNA strand. In summary, joint profiling of 5hmC and 5mC 

using scMHT-seq shows that unlike 5mCpG, the genome-wide strand-specific distributions of 

5hmC and non-CpG methylation in single cells are closely linked and directly related to the age 

of the old inherited DNA strands. 

Our comparison of non-CpG methylation to 5hmC strand bias interestingly also revealed 

that the slope of the best fit line was less than 1. For example we found that on average, the slope 

of 5mCpA vs. 5hmC strand bias was 0.59, implying that the strand bias of 5mCpA is always closer 

to 0.5 than that of 5hmC, and suggesting that the net rate of accumulation of 5mCpA on new DNA 

strands compared to old DNA strands due to the action of de novo methyltransferases and TET 

proteins is faster than that of 5hmC due to the action of TET proteins (Fig. 2e). To further 

investigate these observations, we estimated these correlations and slopes for individual cells, 

and compared the results to in silico derived cells where the chromosome-wide distribution of 

these epigenetic marks were randomly sampled from a background distribution derived from the 

experimental data (Fig. 2f-g). While the randomly generated in silico cells lacked correlation 

between 5hmC and 5mCpA strand bias on average, our experimental data showed strong 

Pearson’s correlations and slopes in all individual cells (mean r = 0.91 and mean slope = 0.58) 

(Fig. 2f-g), further demonstrating that 5hmC accumulates at a slower rate than 5mCpA in 

individual hESCs. To further validate these results, we performed stochastic modeling to estimate 

the turnover rates for the different epigenetic marks, using a model we previously developed13. In 

agreement with our results, we found the turnover rate of 5mCpA to be higher than 5hmC 

(Supplementary Fig. 10). Overall, these results show that scMHT-seq can accurately profile 

5hmC, 5mCpG, and non-CpG methylation simultaneously from single cells with results that 

closely match individual measurements in single cells. Finally, these results show that strand-

specific quantification of 5mC and 5hmC from the same cell in scMHT-seq can be used to 

estimate the kinetics of accumulation and loss of the methylome in mammalian cells.  

 

scMHT-seq identifies DND1 and SOX15 as potential factors involved in the global passive 
erasure of DNA methylation during hPGCLC maturation 
After establishing scMHT-seq and validating that it can quantitatively profile DNA methylation, 

DNA hydroxymethylation and transcriptomes from single cells, we next wanted to apply the 

method to gain deeper insights into dynamic methylome reprogramming in the human germline. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.01.646736doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.01.646736
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preimplantation development and the maturation of primordial germ cells (PGC) during early 

mammalian embryogenesis is characterized by dramatic global erasure of the methylome that is 

driven both by active demethylation, arising from the conversion of 5mCpG to 5hmCpG, as well 

as passive demethylation, arising from a reduction or lack of DNMT1-mediated 5mCpG 

maintenance activity (Fig. 1a)1. While this genome-wide erasure of DNA methylation in hPGCs is 

critical for the development of the germline in vivo, recent efforts to mimic this process in vitro by 

generating human PGC-like cells (hPGCLCs), with the long-term goal of using these technologies 

to accomplish in vitro gametogenesis, has been limited to cells with features akin to recently 

specified PGCs which have not undergone complete global DNA demethylation10. Recently, we 

developed an in vitro system that supports longer term culture of hPGCLCs where we observed 

partial demethylation (Fig. 3a)11. However, the contribution of active and passive demethylation 

to the global loss of the methylome during hPGCLC maturation remains unclear and the effect of 

5mCpG erasure on cell identity is currently unknown. As this system is potentially composed of a 

heterogeneous population, bulk techniques can only provide limited insights; therefore, we 

hypothesized that quantifying 5mC, 5hmC and mRNA from the same cell using scMHT-seq will 

allow us to map the dynamics of the erasure of the methylome and enable us to directly link 

epigenetic reprogramming to cell identity during hPGCLC development. Thus, we applied scMHT-

seq to hPGCLCs 4 days after induction (denoted D4) and hPGCLCs cultured for an additional 10 

or 21 days in long-term culture conditions (denoted D4C10 and D4C21, respectively) (Fig. 3a). 

To assess the state of the methylome of hPGCLCs at all three time points, we first 

quantified strand bias in single cells. As with hESCs, we observed a wide unimodal 5hmC strand 

bias distribution and a high degree of cell-to-cell heterogeneity in 5hmC strand bias (Fig. 3b,c). 

However, unlike undifferentiated hESCs, we found that the 5mCpG strand bias distribution was 

wider with longer tails in all hPGCLC culture conditions (Fig. 3b). Notably, we discovered that a 

subset of cells exhibited high variance in 5mCpG strand bias which coincided with high variance 

in 5hmC strand bias for the same cells, suggesting that a subset of hPGCLCs in all conditions 

have reduced 5mCpG on new DNA strands compared to old strands, implying that these cells are 

undergoing genome-wide passive demethylation due to impaired DNMT1-mediated maintenance 

methylation activity (Fig. 3c). Furthermore, in support of these results, we found that 5hmC and 

5mCpG strand bias across chromosomes in individual cells were strongly correlated at all three 

time points, clearly highlighting the existence of passive demethylation in this system, consistent 

with our previous observations (Supplementary Fig. 11a)11. Interestingly, compared to hESCs, we 

generally also observed a significantly weaker correlation and slope between 5hmC and non-CpG 

methylation, indicating distinct non-CpG methylation dynamics in hPGCLCs (Fig. 1f-g, 
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Supplementary Fig. 11a,b). Next, to identify the subset of hPGCLCs that are passively 

demethylating, we compared D4, D4C10 and D4C21 hPGCLCs to hESCs and classified cells as 

those that display high (maintained or ‘MnT’) or impaired (unmaintained or ‘UmnT’) DNA 

methylation maintenance. Strikingly, we find that a substantial fraction of hPGCLCs are passively 

demethylating at all three time points, with a larger proportion of hPGCLCs passively 

demethylating at longer culturing times (Fig. 3d,e). Overall, these results from scMHT-seq show 

that hPGCLCs in this in vitro culture system show dramatic cell-to-cell heterogeneity with two 

population of cells displaying distinct global methylome profiles (Fig. 3e).  

We then focused on the transcriptome of these cells to identify three distinct transcriptional 

clusters. We found that D4 hPGCLCs cluster separately from those in extended culture (denoted 

transcriptional cluster ‘D4’), and that within the long-term culture conditions D4C10 and D4C21, 

two distinct transcriptional states can be observed (denoted transcriptional clusters ‘LT1’ and 

‘LT2’) (Fig. 4a). Interestingly, we found that the transcriptional cluster assignment of LT1 and LT2 

appeared to be independent of whether hPGCLCs were cultured for 10 or 21 days in long-term 

conditions (Fig. 4a). While expression of key hPGC genes, such as SOX17, PRDM1 (also known 

as BLIMP1), TFAP2C and NANOS3, were found in hPGCLCs from all three time points, there 

were key differences between the three transcriptional clusters, with the largest changes 

observed between the D4 and long-term culture groups LT1 and LT2, and these transcriptional 

programs agreed well with prior bulk RNA-seq and immunofluorescence results (Fig. 4b)11. 

Further, promoter and gene body 5mCpG levels decreased during the progression of hPGCLCs 

from D4 to LT1 and LT2, further confirming the ability of long-term culture conditions to maintain 

a germ cell state as they initiate genome-wide erasure of DNA methylation (Fig. 4c).  

While hPGCLCs in these long-term cultures maintained germline identity, we observed 

pronounced heterogeneity spanning both their epigenetic (MnT vs. UmnT) and transcriptional 

(LT1 vs. LT2) states. We hypothesized that these epigenetic and transcriptional states may be 

linked and mimic hPGC maturation in vivo. Strikingly, we discovered that the LT2 transcriptional 

state is highly enriched for UmnT cells, demonstrating that this particular gene expression 

program is associated with passively demethylating hPGCLCs (Fig. 4d). Furthermore, hPGCs in 

vivo initiate genome-wide erasure of DNA methylation after initial specification, suggesting that 

cells in the LT2 transcriptional group are potentially more mature hPGCLCs than those in 

LT13,30,31. 

After establishing that differential DNMT1-mediated maintenance methylation fidelity is 

associated with the two long-term culture transcriptional groups LT1 and LT2, we next focused 

on understanding if these hPGCLCs also undergo active demethylation, as germ cells in vivo 
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have been shown to globally erase their methylome through a combination of passive and active 

demethylation2–4,30–33. Analysis of global 5hmC levels in individual cells showed similar 

distributions for both LT1 and LT2, and when compared to D4 hPGCLCs, the levels of 5hmC 

relative to 5mC in LT1 and LT2 hPGCLCs was low, suggesting that these long-term germ cells 

do not undergo active demethylation (Fig. 4e). In agreement with these results, we also found 

that LT1 and LT2 hPGCLCs had lower levels of 5hmC over promoters and gene bodies compared 

to D4 hPGCLCs (Fig. 4c). Finally, consistent with these observations, we found that 5hmC levels 

are similar in the Mnt and UmnT groups as well, indicating a lack of active demethylation 

(Supplementary Fig. 12). Taken together, these findings suggest that the hPGCLCs cultured in 

this system are not fully demethylated and primarily exhibit passive but not active demethylation.  

Finally, as the LT2 population potentially reflects a more advanced hPGCLC state 

compared to LT1, we wanted to identify the transcriptional signatures that are associated with this 

maturation process. The genes that are differentially expressed between the two transcriptional 

states within long-term culture, LT1 and LT2, are expressed at similar levels in LT1 and D4 

hPGCLCs, suggesting that the LT1 population is transcriptionally closer to the D4 hPGCLCs, 

which have not experienced extended culture, compared to LT2 (Supplementary Fig. 13). Next, 

inspection of differentially expressed genes identified putative genes involved in PGC maturation 

and the initiation of global erasure of DNA methylation (Supplementary Fig. 13). Notably, we 

discovered that DND1 and SOX15 are expressed at higher levels in LT2 compared to LT1, two 

factors that have been shown to be important for germ cell development (Fig. 4f)34–39. For 

example, DND1 has been shown to be associated with mouse germ cell development, with a 

dramatic reduction in PGC numbers occurring after specification in mutants lacking wild-type 

protein expression34. Similarly, DND1 has also been implicated in human germ cell development, 

as DND1 knockout cells have a reduced capacity to differentiate into hPGCLCs36. Further, while 

SOX15 has been shown to be dispensable for initial human primordial germ cell establishment, it 

is potentially important for germ cell maintenance, as SOX15 depletion leads to reduced 

hPGCLCs in in vitro models35. In addition, DND1 expression in Xenopus directly regulates 

NANOS1, a key regulator of PGC fate in this organism37,38. Interestingly, DND1 has also been 

strongly implicated in the downregulation of active cell cycle genes, with DND1 mutants causing 

gonadal teratoma formation in mice40. Consistent with this role of DND1 in other species, we found 

that active cell cycle genes, such as TOP2A and MKI67, are downregulated in the LT2 hPGCLC 

population, which expresses DND1 at higher levels (Fig. 4f-g). In agreement with this observation, 

cell cycle analysis revealed that a larger fraction of cells in LT2 are non-cycling, likely at least in 

part due to high levels of DND1 (Fig. 4h-i). The observation that many LT2 cells are non-dividing 
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while simultaneously displaying passive global demethylation suggests that these cells were 

dividing previously with impaired fidelity of DNMT1-mediated maintenance methylation (Fig. 4d,i). 

Overall, these results from scMHT-seq suggests that factors identified in this work, such as DND1 

and SOX15, are potentially key regulators of the global erasure of DNA methylation and 

maturation of human germ cells, thereby providing strategies to advance hPGCLC development 

in vitro through targeted control of the expression of these genes (Supplementary Fig. 13). 

 

DISCUSSION 
In this work, we have developed scMHT-seq, the first single-cell method to simultaneously profile 

both DNA methylation and DNA hydroxymethylation, together with the transcriptome from the 

same cell, in a single-tube assay that does not require physical separation of the nucleic acids 

prior to amplification, thereby minimizing losses and achieving efficiencies similar to individual 

measurements of scMspJI-seq, scAba-seq and scRNA-seq in single cells. Further, we show that 

the false positive rates of detecting 5mC and 5hmC in scMHT-seq is low and similar to those 

estimated in scMspJI-seq and scAba-seq. Importantly, scMHT-seq also enables genome-wide 

strand-specific measurements of 5mC and 5hmC, allowing quantification of methylation on sense 

and antisense strands, and providing additional insights into the mechanism driving DNA 

methylation erasure by deconvolving passive from active demethylation. Finally, we demonstrate 

that the strand-specific measurements of scMHT-seq in hESCs provides quantitative estimates 

of the kinetics of turnover of 5hmC, 5mCpG and non-CpG methylation on newly synthesized DNA 

strands during each cell cycle relative to older DNA strands.  

Previously, the study of 5mC and 5hmC dynamics was primarily limited to computational 

integration of separate experimental datasets; however, such approaches are not able to directly 

interrogate the underlying rates of methylation and demethylation that regulate the turnover of the 

methylome in individual cells7,41. Therefore, more recently a few techniques have emerged that 

enable simultaneous profiling of 5mC and 5hmC. Our group (Dyad-seq) and others (Six-letter-

seq) have developed techniques to profile 5mC and 5hmC from the same sample; however, these 

methods have not been scaled down to single cells17,18. In contrast, while Joint-snhmC-seq 

enables single-cell measurements, this technique requires splitting the genomic material into two 

halves; therefore, a key limitation of this method is that it cannot detect 5mC and 5hmC from the 

same genomic locus, thereby resulting in low-resolution coverage of the genome and an inability 

to quantify locus-specific relationships between 5mC and 5hmC19. Another recent method, 

SIMPLE-seq, detects 5mC and 5hmC in single cells by performing reactions to convert the 

methylated and hydroxymethylated cytosines; however, these reactions have a conversion rate 
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of less than 90%, unlike bisulfite-based methods that have a conversion rate of unmethylated 

cytosines to uracils of greater than 98%, resulting in a significant fraction of 5mC/5hmC sites 

being incorrectly called as unmethylated cytosines, thereby offering less reliable estimates of the 

methylation and hydroxymethylation levels on a locus-specific or genome-wide scale20. To 

overcome these limitations, scMHT-seq offers an approach free of nucleobase conversion, and 

instead leverages the highly specific recognition activity of restriction enzymes to discriminate 

between 5mC and 5hmC in a single-tube reaction that does not require splitting the genomic DNA 

prior to amplification. DARESOME, another recent single-cell method uses restriction enzymes 

to simultaneously profile 5mC, 5hmC, and unmodified cytosines; however, compared to scMHT-

seq which uses AbaSI and MspJI to recognize modified cytosines in CN20-23G and CNNR 

contexts, respectively, the DARESOME restriction enzymes HpaII and MspI recognize cytosines 

in a more limited sequence context of CCGG sites, and therefore sample considerably fewer 

genomic loci21. Importantly, unlike the other methods discussed above, scMHT-seq enables 

capturing the transcriptome, together with 5mC and 5hmC, from the same cell. Therefore, this 

multiomic single-cell sequencing strategy enables us to directly link methylation dynamics to gene 

expression and cell state in individual cells. Overall, scMHT-seq provides an accurate, sensitive 

and high-throughput approach to reliably capture 5mC, 5hmC and mRNA in single cells, thereby 

offering a comprehensive view of the cytosine methylation cycle in complex and heterogeneous 

cell populations.  

Finally, we applied scMHT-seq to an hPGCLC extended culture system we had previously 

developed to map the global erasure of DNA methylation in this in vitro system11. In vivo, hPGCs 

undergo dramatic genome-wide loss of DNA methylation, a key event that plays a central role in 

the maturation of germ cells and the eventual differentiation towards gametes; however, 

mimicking this global epigenetic reprogramming event in vitro remains a challenge, thereby 

limiting our ability to accomplish gametogenesis in a dish. Therefore, we used scMHT-seq to 

quantify the extent and mechanism through which hPGCLCs demethylate in our in vitro system. 

In extended culture, we observed two transcriptionally distinct groups of hPGCLCs, and leveraged 

scMHT-seq to excitingly find that one of these groups primarily consists of passively 

demethylating cells that represent a more mature germ cell state. Importantly, combined 

measurements of the methylome and transcriptome led us to identify genes that are differentially 

expressed in the demethylating population, and thereby enabled us to find factors that may 

potentially be involved in the erasure of DNA methylation and germ cell maturation. In particular, 

we discovered that cells in a demethylated state expressed high levels of DND1 and SOX15, two 

genes that have previously been shown to be critical for PGC maturation in various species, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.01.646736doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.01.646736
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggesting a key role for these factors in human germ cell development as well. Recently, 

CRISPR interference (CRISPRi) screens have also been used to identify factors important for 

initial hPGCLC specification; however, without measurements of the methylome, it is unclear if 

these genes affect DNA methylation dynamics and hPGCLC maturation42–44. Overall, these 

results demonstrate that scMHT-seq not only enables detailed insights into the mechanisms 

driving DNA methylation dynamics but also through the joint measurement of 5mC, 5hmC and 

mRNA directly help identify the interplay between factors that regulate the methylome and the 

impact of the epigenome on transcription and cell states. 
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MATERIALS AND METHODS 

Mammalian cell culture 
Culturing human embryonic stem cells: All cells were maintained in cell culture incubators at 37oC 

and 5% CO2. H9 human embryonic stem cells were grown feeder-free on plates coated with 

Matrigel (Fisher Scientific, 08-774-552) in mTeSR1 media (STEMCELL Tech., 85850) as 

described previously8. For sorting individual cells into 384-well plates for use in scMHT-seq, a 

single cell suspension is first generated using 0.25% trypsin-EDTA, and the trypsin is 

subsequently inactivated using serum containing media. The cells are then washed with 1X PBS 

and passed through a cell strainer before being single-cell sorted using a FACS instrument into 

384-well plates. 

 

Generation of hPGCLCs and extended culture: UCLA2 human embryonic stem cells were 

cultured and induced into hPGCLCs via an incipient mesoderm-like cell intermediate and the 

generation of disorganized 3D aggregates, as previously described45. After 4 days in 3D culture, 

hPGCLCs were sorted and cultured in extended culture conditions containing FR10 medium, as 

described previously11. Following extended culture, TRA-1-85 positive single hPGCLCs were 

isolated into each reaction well of a 384-well plate for scMHT-seq, as described previously11. 

 

scMHT-seq 
Four microliters of Vapor-Lock (QIAGEN, 9881611) was added to each well of a 384-well plate. 

Thereafter, all the following dispensing steps were performed using a Nanodrop II liquid-handling 

robot (BioNex Solutions). Next, 100 nL of uniquely barcoded reverse transcription primer (7.5 

ng/uL) was added (primers described in Grun et al. with the exception that a 6 bp UMI was used) 

to each well46. Just prior to cell sorting, 100 nL of lysis buffer (0.175% IGEPAL CA-630, 1.75 mM 

dNTPs (NEB, N0447S), 1:1,250,000 ERCC RNA spike-in mix (Ambion, 4456740) and 0.19 U 

RNAse inhibitor (Clontech, 2313A)) was added to each well. Single cells were sorted into each 

well using FACS and stored at -80°C. To begin processing, plates were heated to 65°C for 3 min 

and returned to ice. Thereafter, 150 nL of reverse transcription mix was added (0.7 U 

RNAaseOUT (Invitrogen, 10777-019), 2.33x first-strand buffer, 23.33 mM DTT and 3.5 U 

Superscript II (Invitrogen, 18064-071), and the plates were heated to 42°C for 75 min, 4°C for 5 

min and 70°C for 10 min. Next, 1.5 uL of second-strand synthesis mix was added (1.23x second-

strand buffer (Invitrogen, 10812-014), 0.25 mM dNTPs (NEB, N0447S), 0.14 U E. coli DNA Ligase 

(Invitrogen, 18052-019), 0.56 U E. coli DNA Polymerase I (Invitrogen, 18010-025), and 0.03 U 

RNase H (Invitrogen, 18021-071)), and the plates were then incubated at 16°C for 2 hours. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2025.04.01.646736doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.01.646736
http://creativecommons.org/licenses/by-nc-nd/4.0/


Following this step, 650 nL of protease mix (6 µg protease (Qiagen, 19155) and 3.85x NEBuffer 

4 (NEB, B7004S)) was added to each well, and the plates were heated to 50°C for 15 h, 75 °C for 

20 min and 80°C for 5 min. 500 nL of 5mC glucosylation mix (1 U T4-BGT (NEB, M0357L), 6x 

UDP–glucose, 200 fg of mouse brain spike-in DNA (used for estimating sequencing efficiency) 

(VWR, 76020-078) and 1x NEBuffer 4) was then added to each well, and the plates were 

incubated at 37°C for 16 h. Next, 500 nL of protease mix (2 µg protease and 1× NEBuffer 4) was 

added to each well, and the plates were incubated at 50°C for 3 h, 75°C for 20 min and 80°C for 

5 min. After the second protease step, 500 nL of glucosylated 5hmC digestion mix was added (1x 

NEBuffer 4 (NEB, B7004S), 1 U AbaSI (NEB, R0665S)) to each well and the plates were 

incubated at 25°C for 90 minutes, and 65°C for 25 minutes. Next, 250 nL of protease mix (2 µg 

protease (Qiagen, 19155), and 1x NEBuffer 4) was added to each well, and the plates were 

heated to 50°C for 3 hours, 75°C for 20 minutes, and 80°C for 5 minutes. Next, 500 nL of MspJI 

digestion mix (1x NEBuffer 4, 9.5x enzyme activator solution, and 0.1 U MspJI (NEB, R0661L)) 

was added to each well and the plates were incubated at 37°C for 4.5 hours, and 65°C for 25 

minutes. To each well, 200 nL of uniquely barcoded 20 nM phosphorylated scAba-seq compatible 

double-stranded adapters were added13. Then to each well, 120 nL of uniquely barcoded 125 nM 

phosphorylated scMspJI-seq compatible double-stranded adapters were added15. The 

sequences of scAba-seq and scMspJI-seq compatible double-stranded adapters have previously 

been reported by us13,15. Next, 680 nL of ligation mix (1.47x T4 ligase reaction buffer, 6.99 mM 

ATP (NEB, P0756L), and 140 U T4 DNA ligase (NEB, M0202M)) was added to each well, and 

the plates were incubated at 16°C for 16 hours. After ligation, reaction wells receiving different 

barcodes were pooled using a multichannel pipette, and the oil phase was discarded. Library 

preparation and Illumina sequencing for mRNA enriched and non-mRNA enriched samples was 

performed as described previously8. Finally, the individual scMspJI-seq and scAba-seq libraries 

that were used as controls for comparison to scMHT-seq were prepared as described 

previously13,15.  
 
scMHT-seq analysis pipeline 
All sequencing reads were trimmed to 76 bases. Then 5mC, 5hmC, and transcriptome-based 

reads were separated based on feature-specific barcodes using custom Perl scripts (see 

Supplementary File 1). Thereafter, the scMHT-seq data analysis was performed as described 

previously in Sen et al. and Mooijman et al.13,15. To map reads to the human and mouse genome, 

hg19 and mm10 were used, respectively, with 5mC marks attributed to the mouse genome 

representing spike-in detections. The transcriptome analysis pipeline was previously described 
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by us in Chialastri et al8. Each feature – 5mC, 5hmC or mRNA – was separately analyzed for data 

quality. If at least 30,000 5mC, 300 5hmC, 4,000 unique transcripts and 1,000 genes were 

detected in a cell, it was considered successfully sequenced in all features. In some cases, a cell 

only contained high quality information for one or two of these features; in such instances the cell 

was used in the analysis only when quantifying that feature. 

 
Estimating false positive rates 
The false positive rate per single cell was defined as the fraction of reads where the unintended 

mark is called either jointly with the intended mark or on its own. Separated 5mC- and 5hmC-

specific data (that is, sequencing reads already assigned as 5mC or 5hmC based on feature-

specific barcodes) was searched to count the number of reads containing putative 5mCpG (A), 

reads containing putative 5hmCpG (B), and reads containing putative sites for both 5mCpG and 

5hmCpG (C). The false positive rate for scAba-seq was A/(A+B-C). The false positive rate for 

scMspJI-seq was B/(A+B-C). 

 
Strand bias analysis 
5hmC and 5mC strand biases were calculated per chromosome or for a region within a 

chromosome for each single cell. Strand bias is defined as the number of 5hmC or 5mC marks 

on the sense strand divided by the total number of 5hmC or 5mC marks on both strands.  

 

Gene expression analysis 
The standard analysis pipeline in Seurat (version 3.1.5) was used for single-cell RNA-seq 

normalization and analysis47. Cells where more than 1,000 genes and more than 4,000 unique 

transcripts, as well as less than 20% ERCC spike-ins were detected, were used for downstream 

analysis. The default NormalizeData function was used to log normalize the data. Thereafter, 

principal components were obtained from the 2,000 most variable genes and the elbow method 

was used to determine the optimal number of principal components used in clustering. UMAP 

based clustering was performed by running the following functions, FindNeighbors, FindClusters, 

and RunUMAP. After clustering, cell types were assigned to groups using known expression 

markers. To identify differentially expressed genes (DEGs), the FindAllMarkers or FindMarkers 

function was used. The Wilcoxon rank sum test was used to classify a gene as differentially 

expressed, requiring a natural log fold change of at least 0.3 and an adjusted p-value of less than 

0.01. Cell cycle analysis was performed as described in the Seurat cell cycle vignette using cell 

cycle genes derived previously48. 
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Modeling turnover rates of 5hmC and 5mCpH in individual cells 
The turnover of each modification (5hmC, 5mCpA, 5mCpT, 5mCpC) was modeled stochastically 

using chromosome-wide stand-specific scMHT-seq data. This stochastic model has been 

previously described by us in Mooijman et al.13. For each DNA modification, 100 simulations were 

performed. 
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FIGURES 

 
 
Figure 1 | scMHT-seq enables joint profiling of DNA methylation, DNA hydroxymethylation, 
and the transcriptome in single cells. (a) Dynamics of cytosine methylation in mammalian cells. 

Unmethylated cytosine is converted to 5mC by the action of the de novo methyltransferases 

DNMT3A and DNMT3B, and methylation maintenance, the copying of 5mC from the old to the 

new DNA strand, is mediated by DNMT1. Demethylation can occur ‘passively’ through replicative 

dilution arising from impaired DNMT1 activity or ‘actively’ through conversion to 5hmC and other 

downstream oxidation products, which are not maintained through cell division and can also be 

enzymatically transformed, ultimately getting converted back to unmethylated cytosine. (b) 

Schematic of scMHT-seq shows that 5mC, 5hmC and mRNA can be simultaneously quantified 

from the same cell without requiring physical separation of the nucleic acids prior to amplification. 

Cell- and molecule-of-origin-specific barcodes are shown in red, brown, and gold for mRNA, 5mC, 

and 5hmC, respectively. The Illumina read 1 sequencing primer is shown in blue, and the T7 

promoter is shown in green. (c) Unique 5mCpG sites, 5hmC sites, and mRNA transcripts detected 

using scMHT-seq in individual H9 human embryonic stem cells. (d) Unique 5mCpG, non-CpG 

methylation, and 5hmC sites detected by scMHT-seq in individual H9 cells. 
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Figure 2 | Dynamics between 5hmC, 5mCpG, and non-CpG methylation in individual cells. 
(a) Distribution of the ratio of 5hmC to 5mCpG sites detected by scMHT-seq in individual cells. 

(b) Violin plots of chromosome-wide strand bias distribution for 5mCpG, non-CpG methylation, 

and 5hmC. Each point represents an individual chromosome in single cells. (c) Chromosome-

wide strand bias distributions for 5hmC and 5mCpG, measured with scAba-seq, scMspJI-seq, 

and scMHT-seq. Each point represents an individual chromosome in single cells. Similar strand 

bias distributions obtained from scMHT-seq and the individual methods indicate minimal crosstalk 

between detecting 5mC and 5hmC in scMHT-seq. (d) Heatmap of the variance in the strand bias 

distribution from all autosomal chromosomes of a single cell for 5mCpG, non-CpG methylation, 
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and 5hmCpG. Individual cells are ordered based on those that display the lowest to the highest 

strand bias variance in 5hmC. (e) Comparison of 5mCpA strand bias to 5hmC strand bias for 

individual chromosomes across all single H9 cells profiled by scMHT-seq. The best fit line is 

shown in dotted red. (f,g) Comparison of 5hmC strand bias to 5mCpG and 5mCpH strand bias 

for the same chromosome in individual cells. Each point indicates the slope (f) or Pearson 

correlation (g) of a single cell. Gray dots within gray violin plots indicate an in silico cell, where the 

strand bias of each DNA modification on a chromosome was randomly sampled from the 

experimental dataset. 
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Figure 3 | Long-term culture of hPGCLCs results in the emergence of globally 
heterogenous and partially demethylated hPGCLCs. (a) Schematic for generating hPGCLCs 

in extended culture. hESCs are first differentiated to iMeLCs and four days after induction, 

hPGCLCs are isolated from aggregates by FACS and cultured for an additional 10 days or 21 

days under extended culture conditions. (b) 5hmC (left) and 5mCpG (right) strand bias of 

hPGCLCs at different stages of culture. Data points represent individual chromosomes in single 

cells. (c) Heatmaps of the variance in the strand bias distribution from all autosomal chromosomes 

of a single cell for 5mCpG, non-CpG methylation and 5hmCpG, separated by hPGCLC culture 

conditions. Individual cells are ordered based on those that display the lowest to the highest strand 

bias variance in 5hmCpG. (d) Comparison of the variance in the 5mCpG strand bias distribution 

of individual hPGCLCs derived from different time points in the extended culture. Single cell data 

were acquired with scMHT-seq or scMspJI-seq. Horizontal gray line indicates the maximum 

variance in 5mCpG strand bias observed in individual H9 hESCs, cells that are known to display 
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DNMT1-mediated maintenance of DNA methylation. Cells above this line were those that were 

categorized as showing impaired DNA methylation maintenance (unmaintained or ‘UmnT’). Cells 

below this line were those that were categorized as displaying high DNA methylation maintenance 

(maintained or ‘MnT’). Percent values indicate percentage of hPGCLCs in the UmnT group for a 

given condition. (e) 5mCpG strand bias of ‘MnT’ and ‘Umnt’ hPGCLCs over all stages of culture. 

Data points represent individual chromosomes in single cells.   
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Figure 4 | hPGCLCs in extended culture display two distinct transcriptional states that are 
directly associated with the genome-wide loss of DNA methylation. (a) UMAP projection of 

the transcriptome of hPGCLCs, grouped by culture conditions (left) or gene expression-based 

clustering (right). (b) Normalized expression of key hPGC genes SOX17, PRDM1 (also known as 

BLIMP1), TFAP2C, and NANOS3 in hPGCLCs derived from long-term cultures in D4, LT1, and 

LT2 transcriptional clusters. (c) Normalized 5mCpG (left) and 5hmC (right) profiles over promoters 

and gene bodies of hPGCLCs in D4, LT1, and LT2 transcriptional clusters. Counts of 5mCpG and 

5hmC were normalized against their respective 5mCpG and 5hmC spike-in counts. Solid lines 

indicate mean normalized counts per genomic bin. Shaded regions indicate standard error of the 

mean, computed over 10,000 bootstrap samples. (d) Bar plots show the fraction of hPGCLCs in 
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LT1 and LT2 transcriptional groups that display passive demethylation (unmaintained or ‘UmnT’) 

or high DNA methylation maintenance (maintained or ‘MnT’). (e) Ratio of 5hmC to 5mCpG marks 

detected in individual hPGCLCs from D4, LT1, and LT2 transcriptional groups. (f,g) Normalized 

expression of genes found to be differentially expressed between LT1 and LT2, with genes such 

as DND1 and SOX15 found to be critical for germ cell development and maturation (f), and genes 

such as TOP2A and MKI67 related to cell cycle progression (g). (h) UMAP projection of the 

transcriptome of hPGCLCs grouped by predicted cell cycle stage (G1/G0, G2/M, or S phase) (i) 
Predicted cell cycle phase of hPGCLCs in LT1 and LT2 transcriptional clusters. 
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