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SUMMARY
The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes
cellular responses. Dissecting these computations has been difficult because physical and chemical in-
ducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-
switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using
light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key down-
stream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dy-
namic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then con-
structed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of
future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery
to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels,
durations, and the timing between encounters.
A record of this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

The integrated stress response (ISR) is a conserved signaling

network that allows cells to detect and react to cell-intrinsic

and environmental stresses, including nutritional deficits, mito-

chondrial dysfunction, redox imbalances, viral infections, harm-

ful RNA conformers, and mis-folded proteins in the endoplasmic

reticulum (ER). Because of its fundamental nature, it is not sur-

prising that dysregulation of the ISR has been implicated in the

pathogenesis of our most widespread diseases, including dia-

betes, cancer, and neurodegeneration.1 Four stress sensor ki-

nases—PERK, PKR, HRI, and GCN2—actuate ISR signaling by

phosphorylating a single serine of the a subunit of the eukaryotic

translation initiation factor eIF2 (eIF2a), a heterotrimeric GTPase

required for translation initiation. Phosphorylated eIF2a (p-eIF2a)

competitively inhibits its guanine nucleotide exchange factor

eIF2B,2–4 which leads to a global shutdown of canonical transla-

tion. Concomitantly, phosphorylation of eIF2a promotes the

translation of uORF-containing mRNAs, including those encod-

ing the ISR effector transcription factors ATF4, CHOP, as well

as GADD34, the regulatory subunit of protein-phosphatase 1
(PP1) that mediates negative feedback through dephosphoryla-

tion of eIF2a.5–10 While the molecular structure and circuitry of

the ISR in health and disease have been extensively studied,1

major questions remain about how the ISR encodes information

at the systems level. How does the intensity and duration of a

stress determine the cell’s response? On what timescales and

with what subnetworks does the ISR determine cell fate? How

do past stresses influence cellular resilience?

These questions are difficult to address with classical ISR-

inducing agents such as chemicals (e.g., the ER calcium reup-

take inhibitor thapsigargin11 and sodium arsenite12), viral infec-

tion or synthetic RNAs (e.g., poly-I:C13), and physical stimuli

such as heat shock because all of these stressors induce multi-

ple parallel damage-response pathways that are conflated with

molecular damage. Thus, bona fide changes in the cell’s

response to stress are difficult to disentangle from changes re-

sulting due to failing cellular machinery. In addition, the dose-

response relationship between real stressors and pathway

activation is non-trivial because of the cascading failures that

non-linearly alter cellular stress levels. Finally, damage induced

by stressors is not immediately reversible. Instead, it must be
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repaired by the cell, constraining the investigation of how the ISR

decodes dynamic inputs.

An ideal approach for dissecting the ISR would have three

properties. It would (1) isolate a single stress sensor and activate

it virtually to avoid conflation of inputs from parallel pathways

and molecular damage, (2) enable high-resolution input control

to query input-output proportionality, and (3) exert precise con-

trol of recurrent stimulation dynamics to interrogate the relation-

ship between past stresses and future ones.

Here, we develop an approach with exactly these properties,

using an optogenetically engineered ISR kinase to dynamically

stimulate the ISR pathway with ‘‘virtual stress.’’ Optogenetic

control enables the selective activation of a single kinase of the

ISR pathway without inducing real molecular damage, greatly

reducing the combinatorial complexity of the signals that are

turned on by real stressors. By changing the intensity of light

stimulation, it can tune the fraction of optogenetic proteins in

the activated state, thereby precisely altering the perceived in-

tensity. Light can also be quickly toggled on and off in a matter

of milliseconds, enabling the delivery of precisely defined input

dynamics. By assaying the global cellular changes in gene

expression and the biochemical status at key protein nodes,

such as eIF2a, in response to virtual stress of varying intensities

and durations using high-throughput 96-well light delivery de-

vices,14 we can use optogenetic control to dissect the complex

computations that govern the ISR pathway.

We apply our approach to the ISR kinase PKR, an innate im-

munity effector of vertebrates that detects viral and endogenous

double-stranded RNA (dsRNA).15–19 PKR signaling is dysregu-

lated in numerous diseases, including cancer and neurodegen-

erative disorders,20,21 illustrating its central role in maintaining

organismal homeostasis. Thus, the interrogation of stress en-

coding and decoding through optical control of PKR has both

a broad significance and specific implications for understanding

the fundamental mechanisms cells use to respond to stress.

Although the role of ISR dynamics has not been systematically

interrogated, observations suggest that it utilizes the modalities

of dose and dynamics to encode a wide variety of cell states.

PKR-induced ISR activity has been shown to stochastically

pulse on the timescales of hours in response to viral infections,

suggesting host-pathogen modulation of ISR dynamics.22

More generally, the difference between an adaptive and a mal-

adaptive stress response is commonly defined by the difference

in dosage and timing of a stress input23 (e.g., low, repeated

doses of stress induce acclimation, whereas larger chronic

doses cause physiological dysfunction). Both examples suggest

that hysteresis, or history-dependent dynamics,24 in the ISRmay

play a functional role in dictating outcomes.

To understand how the ISR decodes stress signaling features

we systematically altered both the levels and dynamics of opto-

PKR activity. We coupled these precise input control methods

with quantitative, time-resolved analysis of global transcriptomic

changes as well as single-cell measurements of individual ISR ef-

fectors. This strategy revealed transcriptome remodeling gov-

erned by two dynamical modes—transient and gradual—that

are associated with adaptive and terminal ISR outcomes. By sys-

tematically varying virtual stress intensity, we determined that

p-eIF2a, the adaptive transcription factor ATF4, and the pro-

apoptotic transcription factor CHOP respond proportionally. We
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leveraged these insights to develop an ordinary differential equa-

tion (ODE) model which quantitatively predicted that both the

duration of past stress and the recovery time after stress deter-

mine cellular stress memory. Experimental validation of this

model mapped the landscape of cellular adaptation to stress.

RESULTS

Optogenetic activation of PKR induces the ISR
We chose to engineer optogenetic control over PKR for two rea-

sons. First, PKR’s activation mechanism involves high-order

self-association,25–27 which can be mimicked using optogenetic

clustering tools. Second, PKR is cytoplasmically localized, and

its sensor domain is isolated to a contiguous stretch of amino

acids on the polypeptide chain, making it easier to engineer in

comparison to the other ISR kinases.28,29 Thus, we hypothesized

that clustering PKR through exchanging PKR’s dsRNA binding

domains (dRBM1 and dRBM2) with photo-switchable variants

of cryptochrome2 (Cry2), a light-inducible oligomerizer,30 would

result in light-based activation of the ISR (Figure 1A).

To construct optogenetic PKR (opto-PKR), we replaced

dRBM1 and dRBM2 with one of three optimized variants of

Cry2: Cry2Olig, Cry2OClust, and Cry2ODrop (Figures 1B and

S1A). All three variants contain the E490G mutation in Cry2,

which enhances the proteins’ oligomerization efficiency and is

commonly referred to as Cry2Olig.31 In addition to this mutation,

Cry2OClust and Cry2ODrop have C- and N-terminal peptide se-

quences, respectively, that increase their dynamic exchange

with the cytoplasm32,33 (Figure S1A). In this manner, Cry2Olig-

PKR, Cry2OClust-PKR, and Cry2ODrop-PKR sample a range

of biophysical assembly properties, from more solid-like to

more liquid-like condensates.

To test whether our opto-PKR variants formed light-induced

clusters, we transduced H4 neuroglioma cells and U2OS osteo-

sarcoma cells, sorted them for expression-matched populations

using fluorescence-activated cell sorting (Figure S1B), and took

time-lapse images while continuously stimulating themwith acti-

vating light. All three opto-PKR variants in both cell lines formed

condensates demonstrating light-responsive clustering of the

engineered proteins (Figures 1C, S1C, S1E, and S1F; Videos

S1 and S2). We noted that the number and size of condensates

rapidly increased and then declined for all opto-PKR constructs

in both cell lines (Figures S1C–S1E). We additionally tested the

Cry2Olig opto-PKR variant in non-cancerous HEK293T cells

and found similar dynamics (Figure S1F; Video S2). An estab-

lished point mutation (K296R) in the phosphate transfer site of

the kinase domain of PKR15 (Figure S1H) stabilized these clus-

ters, indicating that their activation-induced dissolution requires

kinase activity (Figure S1I; Video S3).

We next confirmed that none of the opto-PKR variants were

constitutively activated in the dark and that illumination of wild-

type (WT) H4 cells did not induce phosphorylation of either

PKR or eIF2a (Figures S1I and S1J). We then measured the

phosphorylation kinetics of engineered PKR (p-PKR), which we

resolved on western blots by its higher molecular weight than

endogenous PKR, and endogenous eIF2a (p-eIF2a) in response

to continuous illumination. All opto-PKR variants rapidly induced

high autophosphorylation (Figures 1D, 1E, S1K, and S1L), with

similar activation levels and kinetics to classical ISR activators,



Figure 1. Optogenetic clustering of opto-PKR induces the canonical ISR

(A) Schematic representation of opto-PKR induction of ISR. Light-responsive Cry2 domain oligomerizes under blue light induction, leading to clustering and trans-

autophosphorylation of the PKR domain with dark (no light) reversibility.

(B) Construct design and domains. Opto-PKR is a translational fusion between Cry2Olig and the PKR linker and kinase domain.

(C) Live cell imaging of opto-PKR in H4 cells activated under constant 450-nm illumination. Images are the maximum-intensity projection of 5 Z plans taken

through the cell. Scale bars, 10 mm.

(D) Representative western blot of phosphorylated and total opto-PKR and eIF2a under continuous 450-nm illumination. Light treatment over 72min. Illumination

bar in black/blue above blots illustrates 450-nm illumination, with blue indicating illuminating conditions and black indicating dark conditions.

(E) Quantification of western blot in (D). Phosphorylation signal was calculated as the ratio of phosphorylated protein to total protein (PKR or eIF2a) at each time

point. n = 3. Error bars represent SEM.

(F) Western blot of puromycin incorporation into proteins under blue light conditions in opto-PKR cells compared with the WT, illustrating light-activated

translational attenuation. Light treatment over the period of 4 h. Note the strong translational repression elicited by the active opto-PKR.

(G) Immunofluorescence staining of stress granule marker G3BP1. Representative images of fixed opto-PKR cells activated through 450-nm illumination or in the

dark with sodium arsenite (500 mM). Cells were stained for G3BP1. Note that arsenite induces cell death, while light does not. Scale bars, 10 mm.
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arsenite and thapsigargin (Figure S1P). Given Cry2Olig-PKR’s

more consistent activation kinetics, we chose to work with this

variant for the remainder of our experiments and refer to it as

‘‘opto-PKR’’ from here on.

Our initial continuous illumination experiments revealed recep-

tor level negative feedback. We found that opto-PKR levels were

reduced in response to light in all cell lines tested (Figures 1D and

S1L–S1O). Thus, we performed a long-term illumination experi-

ment with the proteasome inhibitor, MG-132, and the translation

inhibitor, cycloheximide (CHX), to determine the cause of activa-

tion-induced receptor-level decreases (Figure S1Q). We found
that neither translation inhibition nor proteasome inhibition alters

the decay of active opto-PKR, leading us to conclude that the

sensor is degraded through another mechanism, such as lyso-

somal proteolysis. However, CHX treatment increased the

response duration of p-eIF2a (Figure S1Q), demonstrating the

necessity of translation in determining p-eIF2a dynamics. Finally,

we note that while receptor-level negative feedback did reduce

levels of opto-PKR, it never becomes undetectable (Figure S1Q,

a-tot-PKR), indicating that there is still an available pool of the re-

ceptor to encode long-duration stress inputs. Overall, the nega-

tive regulation on opto-PKR confirms previous reports that
Cell Systems 14, 551–562, July 19, 2023 553
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activation induces a degradation of PKR34 and suggests that his-

tory dependence in the ISR is dependent on both upstream- and

downstream-acting negative feedback.

Finally, we sought to understand whether opto-PKR induced

canonical cell physiological responses to stress: translation

repression35 and formation of stress granules (SGs), ribonucleo-

protein complexes formed in response to stalled translational

complexes.36 To assess translational repression, we continu-

ously activated opto-PKR and measured puromycin incorpora-

tion into nascent peptides using an anti-puromycin antibody.37

Opto-PKR activation drastically reduced translation initiation,

measured by nascent peptide puromycilation (Figure 1F), which

is consistent with translational repression observed by ISR acti-

vation with chemical inducers.38 Next, we monitored SG forma-

tion by immunofluorescence (IF) of the SG assembly factor

G3BP139 upon activation of opto-PKR. Light-induced SGs,

which did not co-localize with opto-PKR condensates, were

indistinguishable from those formed through arsenite induction,

except for those observed at late time points (>4 h), where arse-

nite-treated cells began to detach from the plate and die

(Figures 1G and S1P–S1R). Altogether, our data demonstrate

that opto-PKR recapitulates the major ISR events across multi-

ple cell lines, allowing us to virtually control the ISR.

The stress-free ISR has a biphasic transcriptional
response
Chemical ISR inducers have pleiotropic effects, rendering them

ineffective tools to dissect the cellular responses to stress from

cellular damage. To overcome this limitation, we used opto-

PKR to globally characterize the dynamics of transcriptome re-

modeling in response to a ‘‘stress-free’’ ISR. We wondered

whether distinct dynamic ISR phases might exist in response

to virtual stress. Thus, we performed a time-resolved RNA

sequencing (RNA-seq) experiment to characterize the dynamic

changes in the transcriptome upon continuous stimulation with

virtual stress. We utilized the optoPlate light delivery device,14

which allows for arbitrary control over the illumination sequence

of each well of a 96-well plate, to vary the duration of 450 nm light

(�121 mW/cm2, see STAR Methods for voltages) (Figure 2A). To

obtain time-resolved transcriptional changes we sampled cells

at 7 time points, from 0 to 12 h. Examination of individual markers

of the ISR (e.g., ATF3, DDIT3 [CHOP], PPP1R15A [GADD34],

etc.) showed two distinct classes of dynamical responses corre-

sponding with transiently pulsed and gradually accumulating

mRNA kinetics (Figure S2A).

These two kinetic response classes suggested that the global

transcriptome dynamicsmay also display a similar pattern. Thus,

to map the global gene expression modes of the ISR, we per-

formed a singular value decomposition on the Z scored, time-

resolved transcriptome matrix (Figure 2A). This technique al-

lowed us to re-project genes onto the orthogonal matrices that

explain the most variance in the time domain. We found that

the first two modes (s1 and s2) explained more than half of the

total variance of the transcriptome (Figure 2B). To visualize these

two dominant modes, we plotted the top 500 and bottom 500

genes from the U vectors associated with s1 and s2. This anal-

ysis showed that s1 represented a transient response, with

genes reaching their maximum between 4 and 6 h of continuous

activation (Figure 2C, top). On the other hand, genes represented
554 Cell Systems 14, 551–562, July 19, 2023
by s2 showed a gradual but continuous change that leveled off

between 8 and 10 h of illumination (Figure 2C, bottom). Analyzing

the transcriptome separately through centroid clustering reca-

pitulated these two dynamic modes (Figure 2D).

Gene ontology (GO) enrichment analysis of these modes

hinted that transiently downregulated processes included trans-

lation, purine and carbohydrate metabolism, and gonadal meso-

derm development, while transiently upregulated processes

included protein ubiquitination and TGF-b signaling. This anal-

ysis suggests that the transient mode is associatedwith adaptive

remodeling of the proteome and alteration of cell identity. On the

other hand, gradually upregulated genes were associated with

apoptosis and ER and nutrient stress responses, while gradually

downregulated processes included mitosis and cell adhesion

(Figure S2B). This analysis suggests that the gradual mode is

associated with a switch toward a terminal response. Together,

these results indicate that the ISR has two prominent dynamic

modes—transient and gradual—and that thesemodes represent

the adaptive and terminal responses of the ISR.

ISR transcription factors respond proportionally to
inputs
The ISR culminates in gene expression programs controlled by

adaptive (ATF4) and pro-apoptotic (CHOP) transcription factors,

yet the question of how these transcription factors respond to

varying the magnitude of a stress has remained unanswered.

This question has been difficult to probe with chemical stressors

because they induce cascading failures that can lead to a non-

linear relationship between chemical stressor concentration

and ISR activity.40 The ISR has been characterized to be

switch-like in some instances,7 while recent findings regarding

themechanismof action of ISR-inhibiting drugs (e.g., ISRIB) sug-

gest a more nuanced dose-response relationship.1,41,42 Thus,

we wondered how the ISR signaling dynamics are affected by

varying magnitudes of virtual stress inputs.

To this end, we characterized the dynamics, at the protein

level, of p-eIF2a, ATF4, and CHOP, which represent the ISR

core, and its adaptive and terminal phases, respectively (Fig-

ure 3A). To control the magnitude of virtual stress, we varied light

intensity as it varies the proportion of Cry2 molecules in the

photo-active state.33 Using the optoPlate device, we applied

light ranging from 4 to 121 mW/cm2 for over 10 h (Figure S3A)

and collected time points for IF analysis of p-eIF2a, ATF4, and

CHOP to obtain their endogenous dynamic responses (Fig-

ure 3B). To analyze the IF images, we developed a custom image

analysis pipeline that extracts single-cell fluorescence intensities

from the nucleus, cytoplasm, and SGs, which we used to quan-

tify the response in over 100 cells per condition for a total of more

than 10,000 single cells across all times and intensities

(Figures S3B and S3C).

In H4 cells, we found that the ISR nodes we examined had fea-

tures that were modulated in proportion to their inputs. P-eIF2a

peaked within 30 min of activation and then repressed by 4 h,

with the peak magnitude varying in proportion to light intensity

(Figures 3C and 3D). HEK293T cells also showed a proportional

response (Figures S3D and S10). We found that ATF4 localized

to SGs, similarly to sodium-arsenite-treated cells (Figure S3B),

as has been reported previously.43 SG-localized ATF4 peaked

at 2 h of activation, where a subset of the adaptive response



Figure 2. The ISR has a biphasic transcriptional response to virtual stress

(A) Experimental design. To investigate the transcriptomic dynamics of opto-PKR-induced ISR over time, H4 cells bearing opto-PKR were illuminated using the

optoPlate device to collect 7 samples across 720 min.

(B) Plot of singular values from S matrix of singular value decomposition on a relative scale.

(C) Plot of the highest contributing 500 genes from transcriptome hits into the two dynamic modes (top and bottom) of s1 and s2. Each blue line represents a

distinct gene from our Z-scored RNA-seq data, and the red line is themean of 500 plotted genes over time. The Z score was normalized by taking every time point

of each gene to its mean across all time points.

(D) Centroid-clustered heatmap of the global transcriptome dynamics over 12 h. Rooted tree diagram of gene clustering is color coded to indicate 4 dy-

namic modes.
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genes peak (Figure S2A), with its peak height also proportional to

the input (Figures 3E and 3F). We also noted a proportional

response in the change in nuclear ATF4, although its magnitude

wasmuch lower than SG-localized ATF4 (Figure S3E). Finally, we

found that CHOP accumulated gradually, with its rate of accu-

mulation varying with the input intensity (Figures 3G and 3H).

We further probed the proportional intensity encoding of

p-eIF2a and CHOP accumulation. We applied a smooth (256

bit) linear gradient of illumination across a field of opto-PKR cells.

We then IF-stained for both p-eIF2a and CHOP, at times ranging

from 0 to 12 h (Figures 3I and S3F). This graded illumination led to

a spatially graded response in both p-eIF2a and CHOP (Figure 3I).
Quantification of the data showed a best fit corresponding with a

2nd order polynomial, suggesting that the ISR has an accelerating

behavior when computing p-eIF2a levels, which are then trans-

mitted toCHOPprotein levels (Figures 3J, S3G, andS3H). Overall,

these experiments demonstrate that p-eIF2a, ATF4, and CHOP

have a large dynamic range and are modulated in proportion to

their inputs, albeit with a polynomial non-linearity.

A simple ODEmodel of the ISR captures core responses
and predicts stress memory
Our studies so far have focused on probing the cellular response

to continuous stress inputs. However, the ISR dynamically
Cell Systems 14, 551–562, July 19, 2023 555



Figure 3. ISR transcription factors in different ISR signaling modes respond proportionally with fixed phases

(A) Schematic of ISR information flow through the activation of opto-PKR.

(B) Experimental design to query responses to varying illumination intensities over time. Blue light intensity was varied from 4 to 121 mW/cm2 using the optoPlate

device over a period of 600 min. Cells were fixed, immunostained for the indicated markers, and imaged, and immunofluorescence data were processed with an

automated pipeline.

(C, E, andG) Representative immunofluorescence images of H4-opto-PKR cells under unique light exposures outlined, with varying combinations of intensity and

duration and stained for p-eIF2a (C), ATF4 (E), and CHOP (G). Scale bars, 10 mm.

(D, F, and H) Quantification of immunofluorescence experiments (C, E, and G). Each line represents specific illumination intensity over time.

(D) Segmenting area around nucleus for cytoplasmic signal. n > 150 cells. Error bars represent standard deviation of population.

(F) Segmenting condensates, then taking total signal as a function of sum of all condensate intensity over number of cells. n > 40 cells per replicate. Error bars

represent SEM of 3 separate technical replicates.

(H) Segmenting nuclei of each cell for nuclear signal. n > 150 cells. Error bars represent standard deviation of population.

(I) Representative immunofluorescence image of gradient light activation of H4-opto-PKR cells stained for p-eIF2a and CHOP. Light gradient applied through

digital micro-mirror device (DMD) every 2 min. Scale bars, 100 mm.

(J) Quantification of cytoplasmic p-eIF2a and nuclear CHOP upon gradient light stimulation. Each point is mean nuclear immunofluorescence intensity of all nuclei

positioned within one of the hundred equally divided horizontal space regions. Line of best fit adhering to quadratic formula: f(x) = ax2 + b. n > 2,000.
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Figure 4. A simple ODE model of the ISR captures core responses and predicts stress memory

(A) Schematic representation of interactions simulated in our model using equations representing opto-PKR, p-opto-PKR, eIF2a, p-eIF2a, and GADD3-PP1

complex, segregated to three sub-modules of the ISR.

(B) Best fit of simulated data through cooperative ODEmodel to experimental data for total opto-PKR, p-opto-PKR, and p-eIF2a, where the line is simulated data

and the points are experimentally measured data.

(C) Simulations showing changes in p-eIF2a levels in response to decreasing illumination intensity.

(D) Simulated response of all the state variables of our cooperative model after fitting to experimental data.

(E) Demonstration of inputs used to probe system hysteresis. To investigate the effect of past stress inputs to present stress inputs, we simulated multiple

increasing ratios of stress inputs to recovery in the same period, before applying an identical challenge to all simulations.

(F) Simulated stress memory through the modulation of ratios of inputs to recovery. Normalized levels of key state variables over time: p-opto-PKR (left), p-eIF2a

(mid), GADD34-PP1 (right). Challenge occurs at 10 h for all simulations.
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oscillates in response to viral infection,22 and the proposed

adaptive effects of stress are inherently multi-phasic in that

they describe the effect of past stresses on future ones.44–46

To predict how dynamic stress inputs are processed, we con-

structed and fit a simple ODE model of the ISR. Although the

ISR has been modeled before,47 we sought to build the simplest

model that still captured the system dynamics and to be the first

to parameterize a model using non-damaging inputs, which

could confound interpretations.

We chose to represent the ISR as three interconnected mod-

ules: sensor, core, and memory (Figure 4A). We approximate the

sensor module, our ability to activate it with light, and its phos-

phorylation of eIF2a using mass action kinetics (Figure S4A).

To minimize the number of free parameters, we simplified the

core and memory modules by choosing to represent the guano-

sine diphosphate (GDP) and guanosine triphosphate (GTP)-

bound forms of eIF2a, as well as the multiple eIF2B assembly

states, as non-linear cooperative interactions between eIF2a,

p-eIF2a, and the well-known phosphatase-coupling protein,

GADD34 (Figures 4A and S4A). To parameterize our model, we

fit it to the normalized p-opto-PKR, total opto-PKR, and

p-eIF2a data collected for the maximal continuous activation

(Figures 4B, S4B, and S4C). The model reproduced the recep-

tor-level feedback on opto-PKR and GADD34 accumulation,

as well as the observed modulation of peak p-eIF2a

(Figures 4C and 4D; Method S1).

We hypothesized that both the background accumulation of

effective PP1 activity in combination with the drop in opto-PKR

levels would desensitize future inputs as a function of past in-
puts. To test this hypothesis, we simulated a short (1.5 h), inter-

mediate (3 h), and long (6 h) stimulation followed by a uniform

30-min challenge, corresponding to the peak activation of the

naive ISR (Figure 4E). These simulations demonstrated a nega-

tive relationship between the amount of prior stimulation on the

ability of the core module of the ISR to respond to future chal-

lenges, which was mediated by the varying accumulation of

GADD34-PP1 in the memory module, and the decrease in the

available opto-PKR in the sensor module (Figures 4F and S4D).

Overall, our model recapitulates the observed ISR dynamics

and suggests that the ISR can encode memories of prior stimu-

lations through modulating the concentration of PKR sensor and

the activity of the GADD34-PP1 feedback control module, as has

been recently suggested.47

Input dynamics shape the stress memory landscape
Chronically stressed cells respond differently than those exposed

to acute stress,48 suggesting a role for stress input duration in

shaping the ISR.Our simulations predicted that prior inputs atten-

uate the system’s response to future inputs, thus constituting a

stress memory. To map the stress memory landscape, we varied

the duration of stress input independently from the recovery dura-

tion. This stimulation/recovery regime was followed by a uniform

challenge (10-min input) to query the cells’ response (Figure 5A).

Using our model (Method S1), we applied these variable training

and recovery times to simulate the stressmemory landscape.We

found that the p-eIF2a was dependent on both conditioning vari-

ables (Figure 5B), anticorrelated with GADD34-PP1 levels at the

time of challenge (Figure S5C) and correlated with the total
Cell Systems 14, 551–562, July 19, 2023 557



Figure 5. Input dynamics shape the stress memory landscape

(A) Experimental scheme used to map the stress memory landscape. Cells were conditioned by varying stress inputs and recovery durations, before applying an

identical challenge to query present response. Conditioning inputs were applied to the cooperative model and to cells for comparison. Cells were illuminated with

the optoPlate device, fixed, immunostained, and quantified for p-eIF2a (similarly to 3B).

(B) Heatmap of simulated stress memory landscape for p-eIF2a in response to 10-min challenge. Total duration of conditioning varies.

(C) Interpolated heatmap of experimental stress memory landscape for p-eIF2a in response to 10-min challenge. Input light intensity at 55 mW/cm2. Experimental

data quantified as normalized mean intensity of cytoplasmic immunofluorescence signal. Each dot represents a sample point. n > 375 single cells for each point.

(D) Representative immunofluorescence images immunostained for p-eIF2a after conditioning and challenge. Controls: naive, no illumination, +10 min, only

challenge (no conditioning). Scale bars, 10 mm.
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opto-PKR (Figure S5D). Notably, the response of the ISR to the

fixed challenge in simulations that were trained with long dura-

tions of stress (�3–10 h), but given short recovery times (<7 h),

was severely blunted (Figure 5B).

To test whether our model predicted the stress memory land-

scape, we used the optoPlate device to probe the response to a

subset of the conditioning inputs, followed by the same 10-min

challenge. These experiments require rapid reversibility of the

stimulus to ensure that the queried cellular state is only a

response to the most recent challenge and not the continuation

of a previous activation. Therefore, we measured the phosphor-

ylation decay of p-eIF2a in response to pulses of activating light

of varying durations and found that it decayed on the timescale

of 30 min at all tested durations of activation, significantly faster

than the briefest recovery duration tested (2 h) (Figure S5A). We

note that by testing the decay in response to longer duration in-

puts, we ensured that the system is not locked into a light active

state, even upon withdrawal of activating light. In addition, we

verified that p-eIF2a is inactive prior to the 10-min challenge (Fig-

ure S5B), with only scattered p-eIF2a activity in dividing cells, as

has been reported previously.49 Finally, we confirmed with our

model and previous experiments that opto-PKR is still present

after input durations > 7 h (Figures 1F, 4B, and S1Q).

We found that our model predictions were in agreement with

the cellular response. Long duration inputs and short recovery
558 Cell Systems 14, 551–562, July 19, 2023
times severely blunted p-eIF2a levels (Figure 5C). Short duration

inputs also reduced p-eIF2a levels, whereas cells were generally

fully recovered after >12 h (Figure 5C). Upon examination of IF

images, we found these patternswere visibly evident (Figure 5D).

Finally, we co-stained for the SGmarker, G3BP1, and found that

only after the longest-duration inputs, corresponding to peak ter-

minal phase, did cells completely inhibit SG formation (Fig-

ure S5D). Together, our simulations and experimental data

describe the timescales of cellular adaptation to stress and impli-

cate downstream negative feedback (e.g., GADD34) and up-

stream receptor-level feedback in determining the memory

landscape.

DISCUSSION

Neuronal optogenetic tools revolutionized neuroscience

because of their ability to causally dissect the role of neural firing

dynamics in driving a brain or behavior state. Here, we use

cellular optogenetic tools analogously to control the perceived

ISR input and understand how ISR signaling dynamics dictate

cellular outcomes. The ability to deliver ISR input dynamics

without damaging cells—we call this virtual stress—allowed us

to address three longstanding questions: (1) What are the tem-

poral phases of the ISR? (2) How do these responses relate to

stress intensities? (3) How is the ISR modified by its history?
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Based on our analysis of time-resolved transcriptomic

profiling, we propose that the ISR can be delineated into two

distinct dynamical modes: (1) a transient mode associated with

the pro-adaptive response that peaks at �4 h and (2) a gradual

mode that slowly activates terminal response genes in the back-

ground, leveling off at �10 h. Using this insight, we probed

pathway encoding at key nodes, representative of the gradual

and transient phases, by coupling a high-throughput light deliv-

ery device to custom automated image analysis algorithms. This

approach allowed us to systematically scan through activation

levels and durations in thousands of single cells, revealing that

they respond proportionally to stress levels, albeit with their

own phase-dependent dynamics. We found that the timing of

these two phases was unchanged by intensity, suggesting that

stress duration is a central feature sensed by the ISR. A detailed

analysis of the effects of stress intensity on the dynamics of the

transcriptome remains an important future direction.

Our data guided us to construct a simpleODEmodel of the ISR

to explore its dynamical properties. We found that themodel dis-

plays hysteresis, which suggested that it could be used to pre-

dict the encoding of stress memories. By systematically

modeling variations in the duration of both stress input as well

as recovery time, we simulated a stress memory landscape

that predicted that longer stresses and shorter recovery times

generally blunt the cell’s present response. We validated our

model’s prediction experimentally, generating the first map of

the stress memory landscape. Our model highlights the combi-

nation of receptor-level degradation and phosphatase-induced

negative feedback shaping this memory landscape. Rather

than focusing solely on cellular contexts where stress is deliv-

ered in a sustained manner using small molecule poisons, our

work points to the importance of pulsatile and/or stochastic

ISR dynamics that have now been observed to occur in response

to viral infection.47

The value of ‘‘virtual’’ stress in interrogating pathways
that detect molecular damage
Virtually activating the ISR allowed us to systematically screen

through fixed intensities of perceived stress, making way for

the analysis of a stress-free ISR. This allowed us to examine

the global transcriptomic state of cells without confounding al-

terations due to failing cellular subroutines (such as a damaged

ER resulting from thapsigargin treatment11 or sublethal oxidation

arising from arsenite exposure12). By isolating a single sensor,

PKR, our approach also allows us to eliminate any possible con-

tributions of parallel stress response pathways that are activated

by the same input, as occurs with multiple innate immunity

dsRNA sensors.50 Despite continuously activating the ISR for

over 16 h, we did not observe significant signs of cell death in

the cell lines we studied. This could be explained by one of the

following scenarios: (1) the cancer cells have re-wired their stress

response to avoid or actively suppress apoptosis; (2) in certain

cell types, ISR-induced programmed cell death requires addi-

tional inputs, which are satisfied by true damage; or (3) cell death

requires longer chronic ISR induction than that was tested in this

study. Indeed, GO analysis of the terminal phase showed that

apoptotic processes (GO: 0006915) were significantly enriched

in the upregulated gene class, indicating a potential preamble

to ISR-induced apoptosis. Furthermore, studies of how the ISR
is re-wired across a range of cancers using orthogonally

controlled stress sensors such as ours could reveal how onco-

genic transformation selects for genotypic and epigenetic states

that curb ISR-induced cell death.

An additional advantage of optogenetic induction over tradi-

tional stressors is that it can be patterned arbitrarily in space

through the spatial modulation of light. We used this property

to probe the decoding function of CHOP. Using digital micromir-

ror devices with 256-bit resolution, we delivered a linear gradient

of light to smoothly modulate the ratio of opto-PKR molecules in

the photo-active and photo-inactive states. Cells produced a

shallow 2nd order quadratic response in their p-eIF2a and

CHOP protein levels, suggesting that cells detect a wide range

of stress intensities at these key nodes.

The effect of long duration stimuli on PKR activation
Long duration inputs to opto-PKR indicate an apparent contra-

diction. On the one hand, both western blot and IF data (Fig-

ures 1, 3, and S1Q) show that opto-PKR degrades to a minimal

level over the duration of 2–4 h. This receptor-level degradation,

in combination with other downstream negative feedback regu-

lators (e.g., GADD34), explains a concomitant drop in p-eIF2a

levels on a similar timescale (Figure 1Q). On the other hand, in

our stress memory experiments, we show that increasing the

light duration beyond 4 h continues to affect the ISR memory

in terms of p-eIF2a response (Figures 5C and 5D). These lead

to the apparent contradiction that stimulation of opto-PKR influ-

ences the ISR long after it has been degraded.

We refer to our western blots and computational model to

explain this contradiction. We find that although the pool of avail-

able opto-PKR drops, it never goes to zero, and a basal level is

maintained (Figures 4B, 4F [left] and S1Q). Our model demon-

strates that this is because additional opto-PKR continues being

produced as GADD34 levels increase. This downstream nega-

tive feedback alleviates translational attenuation (Figure 1F)

enough to induce basal expression of the receptor and thereby

resolve the contradiction. We note that our global transcriptomic

analysis (Figure 2) showed a cluster of genes that continue to

respond to illumination well beyond the initial transient response.

These genes constitute a potential mechanism for the cell to log

the duration of ISR activation for cellular decisions that are

induced in response to chronic inputs. Overall, these observa-

tions highlight the intricate interplay between feedbacks on

different nodes in the pathway and suggest potential mecha-

nisms for altering the cellular response to chronic stress by, for

example, modulating the relative strength and timing of up-

stream and downstream feedback on the ISR.

The stress memory landscape in terms of normal
cellular functions, adaptation, and stress-related
diseases
Our model and experiments not only make quantitative predic-

tions but also suggest where stress memory is stored and

what parameters should be modified to alter the shape of the

stress memory landscape. Our simulations demonstrate that

the instantaneous level of the GADD34-PP1 complex and the

availability of stress sensor kinases are, at least in part, respon-

sible for the ISR’s history-dependence (Figures 4E, 4F, and S4D).

However, at least another PP1 regulatory subunit, CreP, also
Cell Systems 14, 551–562, July 19, 2023 559
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induces dephosphorylation of eIF2a outside the negative feed-

back loop established by the induction of GADD34 and should

be accounted for in further evaluation of stress memories. We

found that stress memory is a combination of feedback on up-

stream and downstream components. As such, altering the pa-

rameters of effective GADD34-PP1 (K, K1, K2, and ß1) and its

degradation (ß2), as well as the creation and degradation of the

sensor (a₀, d1), will enable manipulation of the memory land-

scape. While the rates of accumulation and decay of GADD34

and PKR explain, to some degree, the encoding of stress mem-

ories (this work and Klein et al.47), we cannot discard the possi-

bility that other regulators of the availability of ternary complex

(i.e., CreP, eIF2B) could also contribute to the stress memory

landscape. Drugs targeting these parameters may prove to be

useful in alleviating disease symptoms caused by failure of the

cell to either forget or remember past stresses. Further in vivo

studies will be required to address this possibility.

In healthy cells challenged with short durations of stress, the

ISR induces an adaptive response that increases resilience. On

the other hand, this same pathway, when chronically activated,

causes disease marked by reduced cellular function and

increased cell death.20 Because the severity and likelihood of

onset of many ISR-related diseases (e.g., Alzheimer’s, Hunting-

ton’s, Parkinson’s, and diabetes) increases with age, this obser-

vation begs the question of whether the ISR’s dynamical infor-

mation processing capability is prone to corruption during

aging. Recently, the role of altered signaling dynamics was

shown to explain how some cancers misperceive extracellular

signals, transmuting healthy dynamical information into onco-

genic signals.51 Whether altered ISR dynamics explain disease

states in a similar manner, with age-related changes in the ISR

network altering the healthy cellular perception of stress, re-

mains an open question. Future studies combining precise opto-

genetic stimuli with live-cell fluorescent reporters of canonical

stress-responding nodes, such as fluorescent protein CRISPR-

tagged ATF4 and CHOP, in models of ISR-associated diseases

may illuminate this question.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-EIF2a Cell Signaling Cat#9722S; RRID:AB_2230924

Rabbit polyclonal anti-p-EIF2a Cell Signaling Cat#9721S; RRID:AB_330951

Rabbit polyclonal anti-PKR Cell Signaling Cat#3072S; RRID:AB_2277600

Rabbit monoclonal anti-p-PKR Abcam Cat#AB32036; RRID:AB_777310

Mouse monoclonal anti-Puromycin Millipore-Sigma Cat#MABE343; RRID:AB_2566826

Goat polyclonal anti-rabbit HRP linked IgG Cell Signaling Cat#7074P2; RRID:AB_2099233

Goat polyclonal anti-rabbit 680RD IgG Li-Cor Cat#926-68071; RRID:AB_10956166

Goat polyclonal anti-mouse 800CW IgG Li-Cor Cat#926-32210; RRID:AB_621842

Rabbit monoclonal anti-ATF4 Cell Signaling Cat#11815S; RRID:AB_2616025

Mouse monoclonal anti-CHOP Cell Signaling Cat#2895; RRID:AB_2089254

Mouse monoclonal anti-G3BP1 BD biosciences Cat#611126; RRID:AB_398437

Rabbit monoclonal anti-p-eIF2a Abcam Cat#ab32157; RRID:AB_732117

Goat polyclonal anti-rabbit 633 IgG Invitrogen Cat#A21070; RRID:AB_2535731

Goat polyclonal anti-mouse 555 IgG Invitrogen Cat#A28180; RRID:AB_2536164

Bacterial and virus strains

One Shot TOP10 Chemically Competent E. Coli Thermo Fisher Scientific Cat#C404010

Chemicals, peptides, and recombinant proteins

Sodium Arsenite Sigma Aldrich Cat# S7400

Puromycin Thermo Fisher Scientific Cat# A1113803

DAPI Thermo Fisher Scientific Cat# D1306

Fibronectin Sigma Aldrich Cat# F1141

DMEM, high glucose Thermo Fisher Scientific Cat# 11965

Fetal bovine serum Atlas Biologicals Cat#F-0500-D

16% paraformaldehyde Thermo Fisher Scientific Cat#28908

1-step transfer buffer Thermo Fisher Scientific Cat#84731

TRIzol Thermo Fisher Scientific Cat# 15596026

CloneAmp HiFi PCR Premix Takara Cat#639298

Gibson Master Mix New England Biolabs Inc. Cat#E2611

Critical commercial assays

Zymo miniprep Zymo Research Cat#D4036

Zymo gel extraction Zymo Research Cat#D4001

Deposited data

RNA-seq raw data This paper GEO: GSE210019

ISR model This paper Attached as supplementary file

Experimental models: Cell lines

H4 Laboratory of Martin Kampmann N/A

U2OS ATCC ATCC HTB-96

HEK-293T Laboratory of Jared Toettcher N/A

Oligonucleotides

Primers for constructs, see Table S1 This paper N/A

Software and algorithms

Python version 3.9.7 Python Software Foundation https://www.python.org

MATLAB ver. R2020b Update 5 Mathworks, Inc. https://www.mathworks.com/

products/matlab.html
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ImageJ Schneider et al.52 https://imagej.nih.gov/ij/

Nikon NIS-Elements Software Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/

products/software/nis-elements

Arduino IDE 1.8.15 Arduino https://www.arduino.cc/en/software

Other

96 Well glass bottom plate with high

performance #1.5 cover glass

Cellvis Cat#P96-1.5H-N
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Maxwell Z

Wilson (mzw@ucsb.edu).

Materials availability
Requests for reagents will be fulfilled by contacting the lead contact upon reasonable request.

Data and code availability
d Transcriptomic sequencing data have been deposited at Gene Expression Omnibus listed in key resources table. Raw image

data reported in this study will be available at reasonable request.

d All data reported in this paper will be shared by the lead contact upon request.

d All original code is publicly available as a supplementary file (Method S1)

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
Human osteosarcoma epithelial cells (U2OS), H4 neuroglioma cells (H4) and HEK293T cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM) containing 4.5 g/mL glucose (Gibco), 10% fetal bovine serum (Atlas Biologicals, F-0500-D), 1% penicillin

and streptomycin at 37�C and 5% carbon dioxide. All cells carrying light responsive proteins were maintained and treated in the

absence of blue light (dark or red light only). Cell culture vessels containing light responsive cells were wrapped in aluminum foil

to prevent accidental light leakage. Prior to microscopy experiments, cells were plated onto glass bottom dishes pre-treated with

bovine fibronectin to allow for adhesion. All experiments, including drug treatments, were done under dark or red light conditions

unless 450nm light illumination was explicitly stated.

METHOD DETAILS

DNA constructs
Plasmids were obtained fromMaxwell Z.Wilson andDiego Acosta-Alvear. The DNA regions of interest were amplified from host plas-

mids by PCR using CloneAmp HiFi PCR Premix (Takara, 639298) with custom primers for Gibson assembly (Table S1). Constructs of

interest were generated through subcloning into a lentiviral expression vector bearing the SFFV promoter using Gibson Assembly as

per the manufacturer’s recommendations. The resulting lentiviral expression vectors contained the chimeric PKR constructs.

Lentivirus transduction
Lentiviral supernatant was produced by transfecting second generation helper constructs, pCMVdR8.91 and pMD2.G (gift of Jared

Toettcher, Princeton University), together with our lentiviral constructs at a mass ratio of 0.444 : 0.056 : 0.500, respectively, into HEK-

293T cells. Transfections were carried out using polyethyleneimine. HEK-293T cells weremaintained for 48 hours post transfection at

which point the supernatant was harvested, filtered through 0.45 mm filter and stored at -80 prior to infection of target cells.

Fluorescence activated cell sorting
Engineered cells were sorted using Sony SH-800 cell sorter system. Gating was determined using untransduced parental cells as a

negative control, and selected cells were sorted through a narrow fluorescence gate to obtain a pseudo-clonal cell line. All engi-

neered cell lines used in this study originated from expansion of pseudo-clonal cell lines.
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Western blotting
Roughly 1 x 106 cells per experimental condition were harvested using 1x Laemmli buffer (30mMTris-HCl pH 6.8, 1%SDS, 10% (w/v)

Glycerol, bromophenol blue) from a single well of a 6-well plate immediately after treatment. The lysates were heated at 95�C for 3mi-

nutes, briefly sonicated, supplemented with 5% 2-mercaptoethanol, and stored at -20�C conditions until SDS-PAGE. Samples were

separated in 4%/10% two layer SDS-PAGE gels run at 100V for 1-2 hours, transferred onto PVDFmembranes using a TE 77 semi-dry

transfer unit (Cytiva Amersham) at 10V for 15 min. The membranes were blocked with 3% BSA in TBS-T for 1 hour, followed by an

overnight incubation with primary antibody at 4�C (blots have been cut for different primary stainings). Membranes were washed and

incubated with fluorescently or HRP conjugated secondary antibodies for 1 hour at room temperature. All antibodies were diluted in

3% BSA in TBS-T. All incubation steps were followed by 3x washes with TBS-T for 10 min. The membranes were imaged using

enhanced chemiluminescence using a Radiance Plus imager (Azure Biosystems) or a Li-Cor Odyssey instrument. Captured blot im-

ageswere then quantified through ImageJ Fiji macro (ImageJ52). All bandswere identified andmeasured in terms of pixel value, whilst

subtracting blot background. For phospho/total ratio calculation, we divided phospho lane of appropriate time by total lane. Any

calculation done in this manner was taken from same transfer blot, prior to being cut for primary staining.

List of antibodies used in western blotting:
Name Company Cat. Number Species [c]

eIF2a Cell Signaling Technology 9722S Rabbit 1:1000

P-eIF2a Cell Signaling Technology 9721S Rabbit 1:1000

PKR Cell Signaling Technology 3072S Rabbit 1:1000

P-PKR Abcam AB32036 Rabbit 1:1000

Puromycin Millipore-Sigma MABE343 Mouse 1:10000

Anti-rabbit HRP linked IgG Cell Signaling Technology 7074P2 Goat 1:5000

Anti-rabbit 680RD IgG Li-Cor 926-68071 Goat 1:10000

Anti-mouse 800CW IgG Li-Cor 926-32210 Goat 1:10000
Puromycilation of nascent peptides
Cells were grown in culturemedium until 80%confluency in 6-well plate for a day (onewell per condition). Cells were then treatedwith

activating blue light illumination accordingly until 30 min prior to the end of their treatment, at which point, the culture media was re-

placed with media containing 18 mM puromycin (Gibco, A1113803) and the cells were incubated for an additional 30 min under illu-

mination before sample collection and analysis as described in the Western blotting section.

Immunofluorescence
Cells were grown on fibronectin (Sigma, F1141) coated glass bottom 96 well plates (Cellvis, P96-1.5H-N), washed with PBS, and

fixed using 4% paraformaldehyde (PFA, Fisher Scientific, AA433689L) in PBS for 10 minutes at room temperature under dark con-

ditions. Fixed cells were washed with PBS and permeabilizedwith blocking buffer (0.05% saponin, 0.5%BSA, 50mM, NH4Cl in PBS)

for 30min at room temperature. The fixed cells were incubatedwith primary antibodies diluted in blocking buffer overnight at 4�C. The
next day, the cells were washed gently 3x with PBS-T, followed by secondary antibody incubation for 1 hour at room temperature in

dark conditions, followed by another round of 3x PBS-T washes. The prepared fixed cells were imaged as detailed in Microscopy

imaging.

List of antibodies used in immunofluorescence analyses:
Name Company Cat. Number Species [c]

ATF4 Cell Signaling Technology 11815S Rabbit 1:400

CHOP Cell Signaling Technology 2895 Mouse 1:400

G3BP1 BD biosciences 611126 Mouse 1:400

p-eIF2a Abcam ab32157 Rabbit 1:200

Anti-rabbit 633 IgG Invitrogen A21070 Goat 1:800

Anti-mouse 555 IgG Invitrogen A28180 Goat 1:800
Microscopy imaging
All microscopy imaging, live or fixed, was done using a W2 SoRa spinning-disk confocal microscope equipped with an electron-

multiplying charge-coupled device camera (Andor, DU-888) and an incubation chamber maintaining cells at 37�C and 5% CO2.
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All cells that were imagedwere plated on fibronectin (Sigma, F1141) coated glass bottom 96well plates (Cellvis, P96-1.5H-N). Images

were captured using a 40x NA 1.25 water immersion objective and a 60x NA 1.2 water immersion objective.

Optogenetic stimulation
Engineered photo-switchable proteins were activated using 450 nm blue light. For Western blot experiments with maximal light acti-

vation of the pathway, we utilized a custom 36 LED plate mounted on a box lined with aluminum foil, allowing for equal light distri-

bution throughout the box. For confocal imaging, 450 nm light was delivered through laser at 100% power using a 40x NA 1.25 water

immersion objective. For spatial patterning of light, we utilized purpose-built microscope-mounted LED-coupled digital micromirror

devices (DMDs) triggered via Nikon NIS Elements software, allowing us to specify the exact parameters of light delivery at each co-

ordinate of our imaging plane. For precisely modulated IF experiments, we utilized the benchtop LED array light delivery device (op-

toPlate), per authors instructions.14 The light delivery parameters for the optoPlate were purpose-set for each experiment, where

stimulating light was continuously ON or OFF, without pulsing, and 4 to 121 mW/cm2, asmeasured by THORLabs power meter, range

of intensities applied translates as 3-96 on the intensity setting of the optoPlate software. The light illumination sequence of each well

included an OFF (dark) period at the start, so that all well illuminations would end at the same time.

Image analysis
All quantification of images followed the same general flow from creating a TIFF library of images to clean-up and analysis using

custom code on MATLAB (Figure 3C). Nikon-generated ND2 files were channel separated and converted to TIFF files using ImageJ

FIJI macro (ImageJ52). The TIFF library of images was organized into separate stacks based on applied treatment (i.e. different in-

tensity of activation, etc.) over time on MATLAB, for ease of access and indexing. All images were then cleaned up to reduce noise

through background subtraction and deletion of super bright pixels. DAPI stained nuclei were segmented to identify nuclei as follows:

First, weGaussian-blurred the images, then used threshold detection to identify edges, andwatershed transformed the nuclearmask

in case of connected nuclei. The nuclear masks were quality checked and the threshold was adjusted manually in case of low quality

masking. For nuclear localized information, we applied the nuclear mask to the channel of interest and collected information of every

nucleus separately. For cytoplasmic information, we dilated the nuclear mask and removed the mask itself from the dilated mask to

quantify the ring around the nucleus as cytoplasmic information. For condensate information, we identified clusters through ‘‘Lap-

lacian of Gaussian’’, ‘‘Sobel’’ edge detection and intensity-based threshold detection and combined the information to create a

condensate mask. We also removed non-condensate information from our mask as follows: outside our size threshold and nuclear

localized. Mean intensity, location and area of all objects were saved for quantitative analysis on a single cell level for nuclear and

cytoplasmic fluorescence normalized to no treatment control. Condensate data was quantified by summing total condensate inten-

sity across an imaging field and normalized to the number of nuclei detected within said image field to obtain the mean condensate

fluorescence per cell. The error bars for condensate data were generated through examining variance of experimental replicates

rather than on a cell-to-cell basis.

Bulk RNAseq
Sample treatment and extraction

H4 cells carrying Cry2Olig-PKR cells were plated on fibronectin treated 96-well glass-bottom plate. Cells were illuminated according

to experimental set-up using the optoPlate device set to continuous illumination intensity of 121 mW/cm2 as mentioned in Optoge-

netic stimulation. Cells were immediately lysed using 120 mL Trizol (Gibco, 15596026) per well, under red light, and incubation for lysis

for 5 min at room temperature. RNA was extracted according to the manufacturer’s protocol.

Illumina library preparations

Bulk RNAseq Illumina libraries were prepared following an adaptation of the single-cell method ‘‘CEL-Seq2’’ where we treated every

illumination duration as a single cell.53,54 Briefly, sample RNA was reverse transcribed with Cel-Seq2 primer #4 (25 ng) using Super-

script II reverse transcriptase. Second Strand Synthesis (SSS) was carried out via E. coli ligase (Invitrogen, Cat. # 18052–019) and

DNA polymerase I (Invitrogen, Cat. # 18010–025) in SS buffer for 2 hours at 16�C. Next, cDNA was purified with 1:1 AMPure XP

DNA beads (Beckman Coulter, Cat. # A63881), and washed with 80% ethanol twice, before elution into nuclease-free water and va-

cufuge concentrated. In vitro transcription was then carried out using MEGAscript T7 kit (Thermo Fisher Scientific, AMB13345) for 13

hours at 37�C, followed by RNA treatment using EXO-SAP (Thermo Fisher Scientific, 78200.200.UL) for 15min at 37�C, and finally the

samples were fragmented (200 mM Tris-acetate (pH 8.1), 500 mM KOAc, 150 mMMgOAc) at 94�C for 3 min before being quenched

by 0.5 M EDTA. The fragmented RNA was size selected with 0.8x AMPure RNA beads (RNAClean XP Kit, Beckman Coulter, Cat. #

A63987) and eluted in nuclease-free water.

Transcriptome dynamics analysis

Paired-end sequencing of the libraries was performed on an Illumina NextSeq 500, and hits were quantified and z-score normalized

per gene. Transcriptomic data was then analyzed through custom pipeline on python packages ‘‘numpy’’ and ‘‘pandas’’. As data

preparation, all genes that were missing entry at any time were removed from data matrix. We then applied SVD function from

‘‘numpy’’ to the transcriptome matrix, where rows were distinct genes and columns were duration of stimulation in increasing order.

For analysis of dynamics genes were sorted and then plotted based on their rank in their U vector magnitude from SVD of transcrip-

tome matrix. We also applied centroid clustering on the transcriptome matrix through clustermap function of ‘‘seaborn’’ package.
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Simulating the mathematical model of ISR
Model simulations were conducted in Python 3 using the Anaconda 4.1.3 using the packages ‘‘numpy’’, ‘‘pandas’’ and ‘‘seaborn’’.

Numerical simulations were conducted using the ‘‘odeint’’ function from the SciPy v1.8.0 scipy.integrate module. All computational

experiments can be found in Supplementary Data and Code files (Method S1).

Model derivation was done by using the law of mass action for describing direct interactions and using non-linear hill functions

when abstracting multiple protein interaction events. For example, the p-eif2a induced creation of GADD34 involves transcription

and translation. Instead of writing down equations that account for the many molecules involved in this process, we opted to repre-

sent this process with a hill function, which was constrained to dynamic data. Our reasoning in performing such abstractions was that

by limiting the number of free parameters and state variables our model could still be interpretable, enabling us to use it to gain intu-

ition about the ISR.

The ISR model was defined as ISR_coop functions with all the state variables and parameters listed in Figures S4A–S4D, for linear

and cooperative models, respectively. Fits to experimental data are detailed in supplementary code files 1 and 2. We defined a time

dependent light modulation function, Ustep(t), with a range of [0] to [1] as a proxy for illumination at specific intensities. PKR and p-

PKR defined in our model refers to our engineered opto-PKR and its phosphorylated form, and Ustep(t) was incorporated into these

state variables. Initial conditions of the state variables were set to 0 for phosphorylated proteins (p-PKR, p-eIF2a) and GADD34, while

non-phosphorylated proteins (PKR, eIF2a) were set to 1, as shown at time zero of simulated step response (Figure 4D). All state vari-

ables were then plotted using matplotlib plotting library and/or seaborn.heatmap library.

For step response simulation, we set Ustep to [1] at time 2 hrs (of modeled time), and let the simulation run through 20 hours. For

intensity scan simulation, we queried the magnitude of Ustep from [0.03] to [1], by increasing it from [0] at 2 hrs of modeled time. For

the input-recovery ratio simulation, we pulsed Ustep to [1] starting at 2 hours for corresponding length of modeled time (1.5, 3, or 6)

hrs, before pulsing for 30 min (0.5 hrs) at time 10 hours. For simulated stress memory landscape, we log sampled light durations (Us-

tep == 1) and recovery durations (Ustep == 0), from [0.5] to [10] hours and [2] to [48] hours, respectively, through nested for loop solv-

ing the ISR model with odeint for each condition.

Gene ontology analysis
Genes were obtained based on their magnitude in the U vector from our SVD analysis. The top 500 and bottom 500 genes for the first

two singular values and were analyzed for over/under representation in biological processes of Homo Sapiens using GO Enrichment

Analysis tool (Panther, ‘‘geneontology.org’).55–57 The dataset used for this analysis was GO biological processes complete set and

performed Fisher’s exact test with correction for false discovery rate. All biological processes found significant were collapsed onto

their parent families.
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