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Supplementary Figure 3 
(A) Image of the optoPlate device at relevant light intensities ranging from 0.2 mcd to 7.5 mcd.  
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(B) Representative immunofluorescence images of H4-opto-PKR cells under blue light stimulation at 3.8 
mcd for 25 min. Stained for nucleus (DAPI), G3BP1 and ATF4. Scale bar = 10 μm. 
(C) Flow diagram of actions in our automated image analysis pipeline. In example images, masking is 
shown in the red channel and fluorescence data in green.  
(D) Violin plots of nuclear ATF4 fluorescence under continuous exposure at varying intensities over time 
(as illustrated in Fig. 3B). Nuclear ATF4 fluorescence normalized to no light illumination control. Each dark 
dot represents quantified nucleus, and the mean is indicated by a white dot.  
(E) Table of goodness-of-fit statistics for both first (f(x) = ax+1) and second order (f(x) = ax^2+1) 
polynomial fits shown in Fig 3J.  
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Supplementary Figure 4 
(A,B) Sets of ordinary differential equations (ODE) defining interactions of state variables shown in Fig. 4A. 
Variable “U” represents light illumination. Cooperative (A) and linear (B) elements are highlighted.  
(C) Goodness-of-fit statistics for the linear and cooperative models to experimental data as shown in Fig 
4B and Supp Fig. 4E.  
(D) Table of parameter values for best fit of linear and cooperative models to experimental data.   
(E) Best fit of simulated data through linear ODE model to experimental data for p-eIF2α, where line is 
simulated data and points are experimentally measured data.  
(F) Simulated data through linear ODE model showing changes in p-eIF2α levels in response to decreasing 
illumination intensity, adjusted as part of the differential equation representing opto-PKR.  
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Supplementary Figure 5 
(A) Western blot of opto-PKR under no light treatment post-illumination to measure phosphorylation 
decay. Pre-treated H4-opto-PKR cells with 20 min of blue light, before following opto-PKR levels over 
time. Time -20 min = no blue light exposure and time 0 min = post 20 min of blue light exposure and start 
of decay measurement.  
(B) Quantification of Western blot in C. Phosphorylation signal normalized as fold change in comparison 
to the total protein at each time point.  
(C) Heatmap of simulated stress memory landscape in terms of the GADD34 response to the 10 min 
challenge. Total duration of conditioning varies. 
(D) Interpolated heatmap of the fraction of cells that formed SGs in response to challenge after 
conditioning. Experimental data quantified from immunofluorescence staining for G3BP1 and ratios of 
cells with SGs compared to total cell count. Each dot represents a sample point. Interpolation was done 
using a modified Akima cubic Hermite method. Insets are representative immunofluorescence images at 
each grey circled sample point. 
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